// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2018-2019 Intel Corporation #ifndef OPENCV_GAPI_TESTS_COMMON_HPP #define OPENCV_GAPI_TESTS_COMMON_HPP #include #include #include #include #include #include #include "gapi_tests_helpers.hpp" #include namespace { inline std::ostream& operator<<(std::ostream& o, const cv::GCompileArg& arg) { return o << (arg.tag.empty() ? "empty" : arg.tag); } inline std::ostream& operator<<(std::ostream& o, const cv::gapi::wip::draw::Prim& p) { using namespace cv::gapi::wip::draw; switch (p.index()) { case Prim::index_of(): o << "cv::gapi::draw::Rect"; break; case Prim::index_of(): o << "cv::gapi::draw::Text"; break; case Prim::index_of(): o << "cv::gapi::draw::Circle"; break; case Prim::index_of(): o << "cv::gapi::draw::Line"; break; case Prim::index_of(): o << "cv::gapi::draw::Mosaic"; break; case Prim::index_of(): o << "cv::gapi::draw::Image"; break; case Prim::index_of(): o << "cv::gapi::draw::Poly"; break; default: o << "Unrecognized primitive"; } return o; } } namespace opencv_test { class TestFunctional { public: cv::Mat in_mat1; cv::Mat in_mat2; cv::Mat out_mat_gapi; cv::Mat out_mat_ocv; cv::Scalar sc; cv::Scalar initScalarRandU(unsigned upper) { auto& rng = cv::theRNG(); double s1 = rng(upper); // FIXIT: RNG result is 'int', not double double s2 = rng(upper); double s3 = rng(upper); double s4 = rng(upper); return cv::Scalar(s1, s2, s3, s4); } void initOutMats(cv::Size sz_in, int dtype) { if (dtype != -1) { out_mat_gapi = cv::Mat(sz_in, dtype); out_mat_ocv = cv::Mat(sz_in, dtype); } } void initMatsRandU(int type, cv::Size sz_in, int dtype, bool createOutputMatrices = true) { in_mat1 = cv::Mat(sz_in, type); in_mat2 = cv::Mat(sz_in, type); sc = initScalarRandU(100); // Details: https://github.com/opencv/opencv/pull/16083 //if (CV_MAT_DEPTH(type) < CV_32F) if (1) { cv::randu(in_mat1, cv::Scalar::all(0), cv::Scalar::all(255)); cv::randu(in_mat2, cv::Scalar::all(0), cv::Scalar::all(255)); } else { const int fscale = 256; // avoid bits near ULP, generate stable test input Mat in_mat32s(in_mat1.size(), CV_MAKE_TYPE(CV_32S, CV_MAT_CN(type))); cv::randu(in_mat32s, cv::Scalar::all(0), cv::Scalar::all(255 * fscale)); in_mat32s.convertTo(in_mat1, type, 1.0f / fscale, 0); cv::randu(in_mat32s, cv::Scalar::all(0), cv::Scalar::all(255 * fscale)); in_mat32s.convertTo(in_mat2, type, 1.0f / fscale, 0); } if (createOutputMatrices) { initOutMats(sz_in, dtype); } } void initMatrixRandU(int type, cv::Size sz_in, int dtype, bool createOutputMatrices = true) { in_mat1 = cv::Mat(sz_in, type); sc = initScalarRandU(100); if (CV_MAT_DEPTH(type) < CV_32F) { cv::randu(in_mat1, cv::Scalar::all(0), cv::Scalar::all(255)); } else { const int fscale = 256; // avoid bits near ULP, generate stable test input Mat in_mat32s(in_mat1.size(), CV_MAKE_TYPE(CV_32S, CV_MAT_CN(type))); cv::randu(in_mat32s, cv::Scalar::all(0), cv::Scalar::all(255 * fscale)); in_mat32s.convertTo(in_mat1, type, 1.0f / fscale, 0); } if (createOutputMatrices) { initOutMats(sz_in, dtype); } } void initMatrixRandN(int type, cv::Size sz_in, int dtype, bool createOutputMatrices = true) { in_mat1 = cv::Mat(sz_in, type); cv::randn(in_mat1, cv::Scalar::all(127), cv::Scalar::all(40.f)); if (createOutputMatrices) { initOutMats(sz_in, dtype); } } // empty function intended to show that nothing is to be initialized via TestFunctional methods void initNothing(int, cv::Size, int, bool = true) {} static cv::Mat nonZeroPixels(const cv::Mat& mat) { int channels = mat.channels(); std::vector split(channels); cv::split(mat, split); cv::Mat result; for (int c=0; c < channels; c++) { if (c == 0) result = split[c] != 0; else result = result | (split[c] != 0); } return result; } static int countNonZeroPixels(const cv::Mat& mat) { return cv::countNonZero( nonZeroPixels(mat) ); } }; template class TestParams: public TestFunctional, public TestWithParam{}; template class TestPerfParams: public TestFunctional, public perf::TestBaseWithParam{}; using compare_f = std::function; using compare_scalar_f = std::function; // FIXME: re-use MatType. current problem: "special values" interpreted incorrectly (-1 is printed // as 16FC512) struct MatType2 { public: MatType2(int val = 0) : _value(val) {} operator int() const { return _value; } friend std::ostream& operator<<(std::ostream& os, const MatType2& t) { switch (t) { case -1: return os << "SAME_TYPE"; default: PrintTo(MatType(t), &os); return os; } } private: int _value; }; // Universal parameter wrapper for common (pre-defined) and specific (user-defined) parameters template struct Params { using gcomp_args_function_t = cv::GCompileArgs(*)(); using common_params_t = std::tuple; using specific_params_t = std::tuple; using params_t = std::tuple; static constexpr const size_t common_params_size = std::tuple_size::value; static constexpr const size_t specific_params_size = std::tuple_size::value; template static const typename std::tuple_element::type& getCommon(const params_t& t) { static_assert(I < common_params_size, "Index out of range"); return std::get(t); } template static const typename std::tuple_element::type& getSpecific(const params_t& t) { static_assert(specific_params_size > 0, "Impossible to call this function: no specific parameters specified"); static_assert(I < specific_params_size, "Index out of range"); return std::get(t); } }; // Base class for test fixtures template struct TestWithParamBase : TestFunctional, TestWithParam::params_t> { using AllParams = Params; MatType2 type = getCommonParam<0>(); cv::Size sz = getCommonParam<1>(); MatType2 dtype = getCommonParam<2>(); // Get common (pre-defined) parameter value by index template inline auto getCommonParam() const -> decltype(AllParams::template getCommon(this->GetParam())) { return AllParams::template getCommon(this->GetParam()); } // Get specific (user-defined) parameter value by index template inline auto getSpecificParam() const -> decltype(AllParams::template getSpecific(this->GetParam())) { return AllParams::template getSpecific(this->GetParam()); } // Return G-API compile arguments specified for test fixture inline cv::GCompileArgs getCompileArgs() const { return getCommonParam<3>()(); } }; /** * @private * @brief Create G-API test fixture with TestWithParamBase base class * @param Fixture test fixture name * @param InitF callable that will initialize default available members (from TestFunctional) * @param API base class API. Specifies types of user-defined parameters. If there are no such * parameters, empty angle brackets ("<>") must be specified. * @param Number number of user-defined parameters (corresponds to the number of types in API). * if there are no such parameters, 0 must be specified. * @param ... list of names of user-defined parameters. if there are no parameters, the list * must be empty. */ #define GAPI_TEST_FIXTURE(Fixture, InitF, API, Number, ...) \ struct Fixture : public TestWithParamBase API { \ static_assert(Number == AllParams::specific_params_size, \ "Number of user-defined parameters doesn't match size of __VA_ARGS__"); \ __WRAP_VAARGS(DEFINE_SPECIFIC_PARAMS_##Number(__VA_ARGS__)) \ Fixture() { InitF(type, sz, dtype); } \ }; // Wrapper for test fixture API. Use to specify multiple types. // Example: FIXTURE_API(int, bool) expands to #define FIXTURE_API(...) <__VA_ARGS__> template struct CompareF { using callable_t = std::function; CompareF(callable_t&& cmp, std::string&& cmp_name) : _comparator(std::move(cmp)), _name(std::move(cmp_name)) {} bool operator()(const T1& a, const T2& b) const { return _comparator(a, b); } friend std::ostream& operator<<(std::ostream& os, const CompareF& obj) { return os << obj._name; } private: callable_t _comparator; std::string _name; }; using CompareMats = CompareF; using CompareScalars = CompareF; template struct Wrappable { compare_f to_compare_f() { T t = *static_cast(this); return [t](const cv::Mat &a, const cv::Mat &b) { return t(a, b); }; } CompareMats to_compare_obj() { T t = *static_cast(this); std::stringstream ss; ss << t; return CompareMats(to_compare_f(), ss.str()); } }; template struct WrappableScalar { compare_scalar_f to_compare_f() { T t = *static_cast(this); return [t](const cv::Scalar &a, const cv::Scalar &b) { return t(a, b); }; } CompareScalars to_compare_obj() { T t = *static_cast(this); std::stringstream ss; ss << t; return CompareScalars(to_compare_f(), ss.str()); } }; class AbsExact : public Wrappable { public: AbsExact() {} bool operator() (const cv::Mat& in1, const cv::Mat& in2) const { if (cv::norm(in1, in2, NORM_INF) != 0) { std::cout << "AbsExact error: G-API output and reference output matrixes are not bitexact equal." << std::endl; return false; } else { return true; } } friend std::ostream& operator<<(std::ostream& os, const AbsExact&) { return os << "AbsExact()"; } }; class AbsTolerance : public Wrappable { public: AbsTolerance(double tol) : _tol(tol) {} bool operator() (const cv::Mat& in1, const cv::Mat& in2) const { if (cv::norm(in1, in2, NORM_INF) > _tol) { std::cout << "AbsTolerance error: Number of different pixels in " << std::endl; std::cout << "G-API output and reference output matrixes exceeds " << _tol << " pixels threshold." << std::endl; return false; } else { return true; } } friend std::ostream& operator<<(std::ostream& os, const AbsTolerance& obj) { return os << "AbsTolerance(" << std::to_string(obj._tol) << ")"; } private: double _tol; }; class Tolerance_FloatRel_IntAbs : public Wrappable { public: Tolerance_FloatRel_IntAbs(double tol, double tol8u) : _tol(tol), _tol8u(tol8u) {} bool operator() (const cv::Mat& in1, const cv::Mat& in2) const { int depth = CV_MAT_DEPTH(in1.type()); { double err = depth >= CV_32F ? cv::norm(in1, in2, NORM_L1 | NORM_RELATIVE) : cv::norm(in1, in2, NORM_INF); double tolerance = depth >= CV_32F ? _tol : _tol8u; if (err > tolerance) { std::cout << "Tolerance_FloatRel_IntAbs error: err=" << err << " tolerance=" << tolerance << " depth=" << cv::typeToString(depth) << std::endl; return false; } else { return true; } } } friend std::ostream& operator<<(std::ostream& os, const Tolerance_FloatRel_IntAbs& obj) { return os << "Tolerance_FloatRel_IntAbs(" << obj._tol << ", " << obj._tol8u << ")"; } private: double _tol; double _tol8u; }; class AbsSimilarPoints : public Wrappable { public: AbsSimilarPoints(double tol, double percent) : _tol(tol), _percent(percent) {} bool operator() (const cv::Mat& in1, const cv::Mat& in2) const { Mat diff; cv::absdiff(in1, in2, diff); Mat err_mask = diff > _tol; int err_points = cv::countNonZero(err_mask.reshape(1)); double max_err_points = _percent * std::max((size_t)1000, in1.total()); if (err_points > max_err_points) { std::cout << "AbsSimilarPoints error: err_points=" << err_points << " max_err_points=" << max_err_points << " (total=" << in1.total() << ")" << " diff_tolerance=" << _tol << std::endl; return false; } else { return true; } } friend std::ostream& operator<<(std::ostream& os, const AbsSimilarPoints& obj) { return os << "AbsSimilarPoints(" << obj._tol << ", " << obj._percent << ")"; } private: double _tol; double _percent; }; class ToleranceFilter : public Wrappable { public: ToleranceFilter(double tol, double tol8u, double inf_tol = 2.0) : _tol(tol), _tol8u(tol8u), _inf_tol(inf_tol) {} bool operator() (const cv::Mat& in1, const cv::Mat& in2) const { int depth = CV_MAT_DEPTH(in1.type()); { double err_Inf = cv::norm(in1, in2, NORM_INF); if (err_Inf > _inf_tol) { std::cout << "ToleranceFilter error: err_Inf=" << err_Inf << " tolerance=" << _inf_tol << std::endl; return false; } double err = cv::norm(in1, in2, NORM_L2 | NORM_RELATIVE); double tolerance = depth >= CV_32F ? _tol : _tol8u; if (err > tolerance) { std::cout << "ToleranceFilter error: err=" << err << " tolerance=" << tolerance << " depth=" << cv::depthToString(depth) << std::endl; return false; } } return true; } friend std::ostream& operator<<(std::ostream& os, const ToleranceFilter& obj) { return os << "ToleranceFilter(" << obj._tol << ", " << obj._tol8u << ", " << obj._inf_tol << ")"; } private: double _tol; double _tol8u; double _inf_tol; }; class ToleranceColor : public Wrappable { public: ToleranceColor(double tol, double inf_tol = 2.0) : _tol(tol), _inf_tol(inf_tol) {} bool operator() (const cv::Mat& in1, const cv::Mat& in2) const { { double err_Inf = cv::norm(in1, in2, NORM_INF); if (err_Inf > _inf_tol) { std::cout << "ToleranceColor error: err_Inf=" << err_Inf << " tolerance=" << _inf_tol << std::endl;; return false; } double err = cv::norm(in1, in2, NORM_L1 | NORM_RELATIVE); if (err > _tol) { std::cout << "ToleranceColor error: err=" << err << " tolerance=" << _tol << std::endl;; return false; } } return true; } friend std::ostream& operator<<(std::ostream& os, const ToleranceColor& obj) { return os << "ToleranceColor(" << obj._tol << ", " << obj._inf_tol << ")"; } private: double _tol; double _inf_tol; }; class AbsToleranceScalar : public WrappableScalar { public: AbsToleranceScalar(double tol) : _tol(tol) {} bool operator() (const cv::Scalar& in1, const cv::Scalar& in2) const { double abs_err = std::abs(in1[0] - in2[0]) / std::max(1.0, std::abs(in2[0])); if (abs_err > _tol) { std::cout << "AbsToleranceScalar error: abs_err=" << abs_err << " tolerance=" << _tol << " in1[0]" << in1[0] << " in2[0]" << in2[0] << std::endl;; return false; } else { return true; } } friend std::ostream& operator<<(std::ostream& os, const AbsToleranceScalar& obj) { return os << "AbsToleranceScalar(" << std::to_string(obj._tol) << ")"; } private: double _tol; }; } // namespace opencv_test namespace { inline std::ostream& operator<<(std::ostream& os, const opencv_test::compare_f&) { return os << "compare_f"; } inline std::ostream& operator<<(std::ostream& os, const opencv_test::compare_scalar_f&) { return os << "compare_scalar_f"; } } // anonymous namespace // Note: namespace must match the namespace of the type of the printed object namespace cv { inline std::ostream& operator<<(std::ostream& os, CmpTypes op) { #define CASE(v) case CmpTypes::v: os << #v; break switch (op) { CASE(CMP_EQ); CASE(CMP_GT); CASE(CMP_GE); CASE(CMP_LT); CASE(CMP_LE); CASE(CMP_NE); default: GAPI_Assert(false && "unknown CmpTypes value"); } #undef CASE return os; } inline std::ostream& operator<<(std::ostream& os, NormTypes op) { #define CASE(v) case NormTypes::v: os << #v; break switch (op) { CASE(NORM_INF); CASE(NORM_L1); CASE(NORM_L2); CASE(NORM_L2SQR); CASE(NORM_HAMMING); CASE(NORM_HAMMING2); CASE(NORM_RELATIVE); CASE(NORM_MINMAX); default: GAPI_Assert(false && "unknown NormTypes value"); } #undef CASE return os; } } // namespace cv #endif //OPENCV_GAPI_TESTS_COMMON_HPP