// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "test_precomp.hpp" #include #include "npy_blob.hpp" namespace opencv_test { namespace { template static std::string _tf(TString filename, bool required = true) { String rootFolder = "dnn/"; return findDataFile(rootFolder + filename, required); } class Test_Model : public DNNTestLayer { public: void testDetectModel(const std::string& weights, const std::string& cfg, const std::string& imgPath, const std::vector& refClassIds, const std::vector& refConfidences, const std::vector& refBoxes, double scoreDiff, double iouDiff, double confThreshold = 0.24, double nmsThreshold = 0.0, const Size& size = {-1, -1}, Scalar mean = Scalar(), double scale = 1.0, bool swapRB = false, bool crop = false) { checkBackend(); Mat frame = imread(imgPath); DetectionModel model(weights, cfg); model.setInputSize(size).setInputMean(mean).setInputScale(scale) .setInputSwapRB(swapRB).setInputCrop(crop); model.setPreferableBackend(backend); model.setPreferableTarget(target); std::vector classIds; std::vector confidences; std::vector boxes; model.detect(frame, classIds, confidences, boxes, confThreshold, nmsThreshold); std::vector boxesDouble(boxes.size()); for (int i = 0; i < boxes.size(); i++) { boxesDouble[i] = boxes[i]; } normAssertDetections(refClassIds, refConfidences, refBoxes, classIds, confidences, boxesDouble, "", confThreshold, scoreDiff, iouDiff); } void testClassifyModel(const std::string& weights, const std::string& cfg, const std::string& imgPath, std::pair ref, float norm, const Size& size = {-1, -1}, Scalar mean = Scalar(), double scale = 1.0, bool swapRB = false, bool crop = false) { checkBackend(); Mat frame = imread(imgPath); ClassificationModel model(weights, cfg); model.setInputSize(size).setInputMean(mean).setInputScale(scale) .setInputSwapRB(swapRB).setInputCrop(crop); std::pair prediction = model.classify(frame); EXPECT_EQ(prediction.first, ref.first); ASSERT_NEAR(prediction.second, ref.second, norm); } void testKeypointsModel(const std::string& weights, const std::string& cfg, const Mat& frame, const Mat& exp, float norm, const Size& size = {-1, -1}, Scalar mean = Scalar(), double scale = 1.0, bool swapRB = false, bool crop = false) { checkBackend(); std::vector points; KeypointsModel model(weights, cfg); model.setInputSize(size).setInputMean(mean).setInputScale(scale) .setInputSwapRB(swapRB).setInputCrop(crop); model.setPreferableBackend(backend); model.setPreferableTarget(target); points = model.estimate(frame, 0.5); Mat out = Mat(points).reshape(1); normAssert(exp, out, "", norm, norm); } void testSegmentationModel(const std::string& weights_file, const std::string& config_file, const std::string& inImgPath, const std::string& outImgPath, float norm, const Size& size = {-1, -1}, Scalar mean = Scalar(), double scale = 1.0, bool swapRB = false, bool crop = false) { checkBackend(); Mat frame = imread(inImgPath); Mat mask; Mat exp = imread(outImgPath, 0); SegmentationModel model(weights_file, config_file); model.setInputSize(size).setInputMean(mean).setInputScale(scale) .setInputSwapRB(swapRB).setInputCrop(crop); model.segment(frame, mask); normAssert(mask, exp, "", norm, norm); } }; TEST_P(Test_Model, Classify) { std::pair ref(652, 0.641789); std::string img_path = _tf("grace_hopper_227.png"); std::string config_file = _tf("bvlc_alexnet.prototxt"); std::string weights_file = _tf("bvlc_alexnet.caffemodel", false); Size size{227, 227}; float norm = 1e-4; testClassifyModel(weights_file, config_file, img_path, ref, norm, size); } TEST_P(Test_Model, DetectRegion) { applyTestTag(CV_TEST_TAG_LONG, CV_TEST_TAG_MEMORY_1GB); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); #endif #if defined(INF_ENGINE_RELEASE) if (target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #endif std::vector refClassIds = {6, 1, 11}; std::vector refConfidences = {0.750469f, 0.780879f, 0.901615f}; std::vector refBoxes = {Rect2d(240, 53, 135, 72), Rect2d(112, 109, 192, 200), Rect2d(58, 141, 117, 249)}; std::string img_path = _tf("dog416.png"); std::string weights_file = _tf("yolo-voc.weights", false); std::string config_file = _tf("yolo-voc.cfg"); double scale = 1.0 / 255.0; Size size{416, 416}; bool swapRB = true; double confThreshold = 0.24; double nmsThreshold = (target == DNN_TARGET_MYRIAD) ? 0.397 : 0.4; double scoreDiff = 8e-5, iouDiff = 1e-5; if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || target == DNN_TARGET_CUDA_FP16) { scoreDiff = 1e-2; iouDiff = 1.6e-2; } testDetectModel(weights_file, config_file, img_path, refClassIds, refConfidences, refBoxes, scoreDiff, iouDiff, confThreshold, nmsThreshold, size, Scalar(), scale, swapRB); } TEST_P(Test_Model, DetectionOutput) { #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); #endif std::vector refClassIds = {7, 12}; std::vector refConfidences = {0.991359f, 0.94786f}; std::vector refBoxes = {Rect2d(491, 81, 212, 98), Rect2d(132, 223, 207, 344)}; std::string img_path = _tf("dog416.png"); std::string weights_file = _tf("resnet50_rfcn_final.caffemodel", false); std::string config_file = _tf("rfcn_pascal_voc_resnet50.prototxt"); Scalar mean = Scalar(102.9801, 115.9465, 122.7717); Size size{800, 600}; double scoreDiff = default_l1, iouDiff = 1e-5; float confThreshold = 0.8; double nmsThreshold = 0.0; if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_CUDA_FP16) { if (backend == DNN_BACKEND_OPENCV) scoreDiff = 4e-3; iouDiff = 1.8e-1; } testDetectModel(weights_file, config_file, img_path, refClassIds, refConfidences, refBoxes, scoreDiff, iouDiff, confThreshold, nmsThreshold, size, mean); } TEST_P(Test_Model, DetectionMobilenetSSD) { Mat ref = blobFromNPY(_tf("mobilenet_ssd_caffe_out.npy")); ref = ref.reshape(1, ref.size[2]); std::string img_path = _tf("street.png"); Mat frame = imread(img_path); int frameWidth = frame.cols; int frameHeight = frame.rows; std::vector refClassIds; std::vector refConfidences; std::vector refBoxes; for (int i = 0; i < ref.rows; i++) { refClassIds.emplace_back(ref.at(i, 1)); refConfidences.emplace_back(ref.at(i, 2)); int left = ref.at(i, 3) * frameWidth; int top = ref.at(i, 4) * frameHeight; int right = ref.at(i, 5) * frameWidth; int bottom = ref.at(i, 6) * frameHeight; int width = right - left + 1; int height = bottom - top + 1; refBoxes.emplace_back(left, top, width, height); } std::string weights_file = _tf("MobileNetSSD_deploy.caffemodel", false); std::string config_file = _tf("MobileNetSSD_deploy.prototxt"); Scalar mean = Scalar(127.5, 127.5, 127.5); double scale = 1.0 / 127.5; Size size{300, 300}; double scoreDiff = 1e-5, iouDiff = 1e-5; if (target == DNN_TARGET_OPENCL_FP16) { scoreDiff = 1.7e-2; iouDiff = 6.91e-2; } else if (target == DNN_TARGET_MYRIAD) { scoreDiff = 1.7e-2; if (getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) iouDiff = 6.91e-2; } else if (target == DNN_TARGET_CUDA_FP16) { scoreDiff = 4e-4; } float confThreshold = FLT_MIN; double nmsThreshold = 0.0; testDetectModel(weights_file, config_file, img_path, refClassIds, refConfidences, refBoxes, scoreDiff, iouDiff, confThreshold, nmsThreshold, size, mean, scale); } TEST_P(Test_Model, Keypoints_pose) { if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); #ifdef HAVE_INF_ENGINE if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif Mat inp = imread(_tf("pose.png")); std::string weights = _tf("onnx/models/lightweight_pose_estimation.onnx", false); Mat exp = blobFromNPY(_tf("keypoints_exp.npy")); Size size{256, 256}; float norm = 1e-4; double scale = 1.0/255; Scalar mean = Scalar(128, 128, 128); bool swapRB = false; // Ref. Range: [58.6875, 508.625] if (target == DNN_TARGET_CUDA_FP16) norm = 20; // l1 = 1.5, lInf = 20 testKeypointsModel(weights, "", inp, exp, norm, size, mean, scale, swapRB); } TEST_P(Test_Model, Keypoints_face) { #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif Mat inp = imread(_tf("gray_face.png"), 0); std::string weights = _tf("onnx/models/facial_keypoints.onnx", false); Mat exp = blobFromNPY(_tf("facial_keypoints_exp.npy")); Size size{224, 224}; float norm = (target == DNN_TARGET_OPENCL_FP16) ? 5e-3 : 1e-4; double scale = 1.0/255; Scalar mean = Scalar(); bool swapRB = false; // Ref. Range: [-1.1784188, 1.7758257] if (target == DNN_TARGET_CUDA_FP16) norm = 0.004; // l1 = 0.0006, lInf = 0.004 testKeypointsModel(weights, "", inp, exp, norm, size, mean, scale, swapRB); } TEST_P(Test_Model, Detection_normalized) { std::string img_path = _tf("grace_hopper_227.png"); std::vector refClassIds = {15}; std::vector refConfidences = {0.999222f}; std::vector refBoxes = {Rect2d(0, 4, 227, 222)}; std::string weights_file = _tf("MobileNetSSD_deploy.caffemodel", false); std::string config_file = _tf("MobileNetSSD_deploy.prototxt"); Scalar mean = Scalar(127.5, 127.5, 127.5); double scale = 1.0 / 127.5; Size size{300, 300}; double scoreDiff = 1e-5, iouDiff = 1e-5; float confThreshold = FLT_MIN; double nmsThreshold = 0.0; if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || target == DNN_TARGET_CUDA_FP16) { scoreDiff = 5e-3; iouDiff = 0.09; } testDetectModel(weights_file, config_file, img_path, refClassIds, refConfidences, refBoxes, scoreDiff, iouDiff, confThreshold, nmsThreshold, size, mean, scale); } TEST_P(Test_Model, Segmentation) { std::string inp = _tf("dog416.png"); std::string weights_file = _tf("fcn8s-heavy-pascal.prototxt"); std::string config_file = _tf("fcn8s-heavy-pascal.caffemodel", false); std::string exp = _tf("segmentation_exp.png"); Size size{128, 128}; float norm = 0; double scale = 1.0; Scalar mean = Scalar(); bool swapRB = false; testSegmentationModel(weights_file, config_file, inp, exp, norm, size, mean, scale, swapRB); } INSTANTIATE_TEST_CASE_P(/**/, Test_Model, dnnBackendsAndTargets()); }} // namespace