// Copyright 2016 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // MSA common macros // // Author(s): Prashant Patil (prashant.patil@imgtec.com) #ifndef WEBP_DSP_MSA_MACRO_H_ #define WEBP_DSP_MSA_MACRO_H_ #include #include #if defined(__clang__) #define CLANG_BUILD #endif #ifdef CLANG_BUILD #define ALPHAVAL (-1) #define ADDVI_H(a, b) __msa_addvi_h((v8i16)a, b) #define ADDVI_W(a, b) __msa_addvi_w((v4i32)a, b) #define SRAI_B(a, b) __msa_srai_b((v16i8)a, b) #define SRAI_H(a, b) __msa_srai_h((v8i16)a, b) #define SRAI_W(a, b) __msa_srai_w((v4i32)a, b) #define SRLI_H(a, b) __msa_srli_h((v8i16)a, b) #define SLLI_B(a, b) __msa_slli_b((v4i32)a, b) #define ANDI_B(a, b) __msa_andi_b((v16u8)a, b) #define ORI_B(a, b) __msa_ori_b((v16u8)a, b) #else #define ALPHAVAL (0xff) #define ADDVI_H(a, b) (a + b) #define ADDVI_W(a, b) (a + b) #define SRAI_B(a, b) (a >> b) #define SRAI_H(a, b) (a >> b) #define SRAI_W(a, b) (a >> b) #define SRLI_H(a, b) (a << b) #define SLLI_B(a, b) (a << b) #define ANDI_B(a, b) (a & b) #define ORI_B(a, b) (a | b) #endif #define LD_B(RTYPE, psrc) *((RTYPE*)(psrc)) #define LD_UB(...) LD_B(v16u8, __VA_ARGS__) #define LD_SB(...) LD_B(v16i8, __VA_ARGS__) #define LD_H(RTYPE, psrc) *((RTYPE*)(psrc)) #define LD_UH(...) LD_H(v8u16, __VA_ARGS__) #define LD_SH(...) LD_H(v8i16, __VA_ARGS__) #define LD_W(RTYPE, psrc) *((RTYPE*)(psrc)) #define LD_UW(...) LD_W(v4u32, __VA_ARGS__) #define LD_SW(...) LD_W(v4i32, __VA_ARGS__) #define ST_B(RTYPE, in, pdst) *((RTYPE*)(pdst)) = in #define ST_UB(...) ST_B(v16u8, __VA_ARGS__) #define ST_SB(...) ST_B(v16i8, __VA_ARGS__) #define ST_H(RTYPE, in, pdst) *((RTYPE*)(pdst)) = in #define ST_UH(...) ST_H(v8u16, __VA_ARGS__) #define ST_SH(...) ST_H(v8i16, __VA_ARGS__) #define ST_W(RTYPE, in, pdst) *((RTYPE*)(pdst)) = in #define ST_UW(...) ST_W(v4u32, __VA_ARGS__) #define ST_SW(...) ST_W(v4i32, __VA_ARGS__) #define MSA_LOAD_FUNC(TYPE, INSTR, FUNC_NAME) \ static inline TYPE FUNC_NAME(const void* const psrc) { \ const uint8_t* const psrc_m = (const uint8_t*)psrc; \ TYPE val_m; \ __asm__ volatile ( \ "" #INSTR " %[val_m], %[psrc_m] \n\t" \ : [val_m] "=r" (val_m) \ : [psrc_m] "m" (*psrc_m)); \ return val_m; \ } #define MSA_LOAD(psrc, FUNC_NAME) FUNC_NAME(psrc) #define MSA_STORE_FUNC(TYPE, INSTR, FUNC_NAME) \ static inline void FUNC_NAME(TYPE val, void* const pdst) { \ uint8_t* const pdst_m = (uint8_t*)pdst; \ TYPE val_m = val; \ __asm__ volatile ( \ " " #INSTR " %[val_m], %[pdst_m] \n\t" \ : [pdst_m] "=m" (*pdst_m) \ : [val_m] "r" (val_m)); \ } #define MSA_STORE(val, pdst, FUNC_NAME) FUNC_NAME(val, pdst) #if (__mips_isa_rev >= 6) MSA_LOAD_FUNC(uint16_t, lh, msa_lh); #define LH(psrc) MSA_LOAD(psrc, msa_lh) MSA_LOAD_FUNC(uint32_t, lw, msa_lw); #define LW(psrc) MSA_LOAD(psrc, msa_lw) #if (__mips == 64) MSA_LOAD_FUNC(uint64_t, ld, msa_ld); #define LD(psrc) MSA_LOAD(psrc, msa_ld) #else // !(__mips == 64) #define LD(psrc) ((((uint64_t)MSA_LOAD(psrc + 4, msa_lw)) << 32) | \ MSA_LOAD(psrc, msa_lw)) #endif // (__mips == 64) MSA_STORE_FUNC(uint16_t, sh, msa_sh); #define SH(val, pdst) MSA_STORE(val, pdst, msa_sh) MSA_STORE_FUNC(uint32_t, sw, msa_sw); #define SW(val, pdst) MSA_STORE(val, pdst, msa_sw) MSA_STORE_FUNC(uint64_t, sd, msa_sd); #define SD(val, pdst) MSA_STORE(val, pdst, msa_sd) #else // !(__mips_isa_rev >= 6) MSA_LOAD_FUNC(uint16_t, ulh, msa_ulh); #define LH(psrc) MSA_LOAD(psrc, msa_ulh) MSA_LOAD_FUNC(uint32_t, ulw, msa_ulw); #define LW(psrc) MSA_LOAD(psrc, msa_ulw) #if (__mips == 64) MSA_LOAD_FUNC(uint64_t, uld, msa_uld); #define LD(psrc) MSA_LOAD(psrc, msa_uld) #else // !(__mips == 64) #define LD(psrc) ((((uint64_t)MSA_LOAD(psrc + 4, msa_ulw)) << 32) | \ MSA_LOAD(psrc, msa_ulw)) #endif // (__mips == 64) MSA_STORE_FUNC(uint16_t, ush, msa_ush); #define SH(val, pdst) MSA_STORE(val, pdst, msa_ush) MSA_STORE_FUNC(uint32_t, usw, msa_usw); #define SW(val, pdst) MSA_STORE(val, pdst, msa_usw) #define SD(val, pdst) do { \ uint8_t* const pdst_sd_m = (uint8_t*)(pdst); \ const uint32_t val0_m = (uint32_t)(val & 0x00000000FFFFFFFF); \ const uint32_t val1_m = (uint32_t)((val >> 32) & 0x00000000FFFFFFFF); \ SW(val0_m, pdst_sd_m); \ SW(val1_m, pdst_sd_m + 4); \ } while (0) #endif // (__mips_isa_rev >= 6) /* Description : Load 4 words with stride * Arguments : Inputs - psrc, stride * Outputs - out0, out1, out2, out3 * Details : Load word in 'out0' from (psrc) * Load word in 'out1' from (psrc + stride) * Load word in 'out2' from (psrc + 2 * stride) * Load word in 'out3' from (psrc + 3 * stride) */ #define LW4(psrc, stride, out0, out1, out2, out3) do { \ const uint8_t* ptmp = (const uint8_t*)psrc; \ out0 = LW(ptmp); \ ptmp += stride; \ out1 = LW(ptmp); \ ptmp += stride; \ out2 = LW(ptmp); \ ptmp += stride; \ out3 = LW(ptmp); \ } while (0) /* Description : Store words with stride * Arguments : Inputs - in0, in1, in2, in3, pdst, stride * Details : Store word from 'in0' to (pdst) * Store word from 'in1' to (pdst + stride) * Store word from 'in2' to (pdst + 2 * stride) * Store word from 'in3' to (pdst + 3 * stride) */ #define SW4(in0, in1, in2, in3, pdst, stride) do { \ uint8_t* ptmp = (uint8_t*)pdst; \ SW(in0, ptmp); \ ptmp += stride; \ SW(in1, ptmp); \ ptmp += stride; \ SW(in2, ptmp); \ ptmp += stride; \ SW(in3, ptmp); \ } while (0) #define SW3(in0, in1, in2, pdst, stride) do { \ uint8_t* ptmp = (uint8_t*)pdst; \ SW(in0, ptmp); \ ptmp += stride; \ SW(in1, ptmp); \ ptmp += stride; \ SW(in2, ptmp); \ } while (0) #define SW2(in0, in1, pdst, stride) do { \ uint8_t* ptmp = (uint8_t*)pdst; \ SW(in0, ptmp); \ ptmp += stride; \ SW(in1, ptmp); \ } while (0) /* Description : Store 4 double words with stride * Arguments : Inputs - in0, in1, in2, in3, pdst, stride * Details : Store double word from 'in0' to (pdst) * Store double word from 'in1' to (pdst + stride) * Store double word from 'in2' to (pdst + 2 * stride) * Store double word from 'in3' to (pdst + 3 * stride) */ #define SD4(in0, in1, in2, in3, pdst, stride) do { \ uint8_t* ptmp = (uint8_t*)pdst; \ SD(in0, ptmp); \ ptmp += stride; \ SD(in1, ptmp); \ ptmp += stride; \ SD(in2, ptmp); \ ptmp += stride; \ SD(in3, ptmp); \ } while (0) /* Description : Load vectors with 16 byte elements with stride * Arguments : Inputs - psrc, stride * Outputs - out0, out1 * Return Type - as per RTYPE * Details : Load 16 byte elements in 'out0' from (psrc) * Load 16 byte elements in 'out1' from (psrc + stride) */ #define LD_B2(RTYPE, psrc, stride, out0, out1) do { \ out0 = LD_B(RTYPE, psrc); \ out1 = LD_B(RTYPE, psrc + stride); \ } while (0) #define LD_UB2(...) LD_B2(v16u8, __VA_ARGS__) #define LD_SB2(...) LD_B2(v16i8, __VA_ARGS__) #define LD_B3(RTYPE, psrc, stride, out0, out1, out2) do { \ LD_B2(RTYPE, psrc, stride, out0, out1); \ out2 = LD_B(RTYPE, psrc + 2 * stride); \ } while (0) #define LD_UB3(...) LD_B3(v16u8, __VA_ARGS__) #define LD_SB3(...) LD_B3(v16i8, __VA_ARGS__) #define LD_B4(RTYPE, psrc, stride, out0, out1, out2, out3) do { \ LD_B2(RTYPE, psrc, stride, out0, out1); \ LD_B2(RTYPE, psrc + 2 * stride , stride, out2, out3); \ } while (0) #define LD_UB4(...) LD_B4(v16u8, __VA_ARGS__) #define LD_SB4(...) LD_B4(v16i8, __VA_ARGS__) #define LD_B8(RTYPE, psrc, stride, \ out0, out1, out2, out3, out4, out5, out6, out7) do { \ LD_B4(RTYPE, psrc, stride, out0, out1, out2, out3); \ LD_B4(RTYPE, psrc + 4 * stride, stride, out4, out5, out6, out7); \ } while (0) #define LD_UB8(...) LD_B8(v16u8, __VA_ARGS__) #define LD_SB8(...) LD_B8(v16i8, __VA_ARGS__) /* Description : Load vectors with 8 halfword elements with stride * Arguments : Inputs - psrc, stride * Outputs - out0, out1 * Details : Load 8 halfword elements in 'out0' from (psrc) * Load 8 halfword elements in 'out1' from (psrc + stride) */ #define LD_H2(RTYPE, psrc, stride, out0, out1) do { \ out0 = LD_H(RTYPE, psrc); \ out1 = LD_H(RTYPE, psrc + stride); \ } while (0) #define LD_UH2(...) LD_H2(v8u16, __VA_ARGS__) #define LD_SH2(...) LD_H2(v8i16, __VA_ARGS__) /* Description : Load vectors with 4 word elements with stride * Arguments : Inputs - psrc, stride * Outputs - out0, out1, out2, out3 * Details : Load 4 word elements in 'out0' from (psrc + 0 * stride) * Load 4 word elements in 'out1' from (psrc + 1 * stride) * Load 4 word elements in 'out2' from (psrc + 2 * stride) * Load 4 word elements in 'out3' from (psrc + 3 * stride) */ #define LD_W2(RTYPE, psrc, stride, out0, out1) do { \ out0 = LD_W(RTYPE, psrc); \ out1 = LD_W(RTYPE, psrc + stride); \ } while (0) #define LD_UW2(...) LD_W2(v4u32, __VA_ARGS__) #define LD_SW2(...) LD_W2(v4i32, __VA_ARGS__) #define LD_W3(RTYPE, psrc, stride, out0, out1, out2) do { \ LD_W2(RTYPE, psrc, stride, out0, out1); \ out2 = LD_W(RTYPE, psrc + 2 * stride); \ } while (0) #define LD_UW3(...) LD_W3(v4u32, __VA_ARGS__) #define LD_SW3(...) LD_W3(v4i32, __VA_ARGS__) #define LD_W4(RTYPE, psrc, stride, out0, out1, out2, out3) do { \ LD_W2(RTYPE, psrc, stride, out0, out1); \ LD_W2(RTYPE, psrc + 2 * stride, stride, out2, out3); \ } while (0) #define LD_UW4(...) LD_W4(v4u32, __VA_ARGS__) #define LD_SW4(...) LD_W4(v4i32, __VA_ARGS__) /* Description : Store vectors of 16 byte elements with stride * Arguments : Inputs - in0, in1, pdst, stride * Details : Store 16 byte elements from 'in0' to (pdst) * Store 16 byte elements from 'in1' to (pdst + stride) */ #define ST_B2(RTYPE, in0, in1, pdst, stride) do { \ ST_B(RTYPE, in0, pdst); \ ST_B(RTYPE, in1, pdst + stride); \ } while (0) #define ST_UB2(...) ST_B2(v16u8, __VA_ARGS__) #define ST_SB2(...) ST_B2(v16i8, __VA_ARGS__) #define ST_B4(RTYPE, in0, in1, in2, in3, pdst, stride) do { \ ST_B2(RTYPE, in0, in1, pdst, stride); \ ST_B2(RTYPE, in2, in3, pdst + 2 * stride, stride); \ } while (0) #define ST_UB4(...) ST_B4(v16u8, __VA_ARGS__) #define ST_SB4(...) ST_B4(v16i8, __VA_ARGS__) #define ST_B8(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ pdst, stride) do { \ ST_B4(RTYPE, in0, in1, in2, in3, pdst, stride); \ ST_B4(RTYPE, in4, in5, in6, in7, pdst + 4 * stride, stride); \ } while (0) #define ST_UB8(...) ST_B8(v16u8, __VA_ARGS__) /* Description : Store vectors of 4 word elements with stride * Arguments : Inputs - in0, in1, in2, in3, pdst, stride * Details : Store 4 word elements from 'in0' to (pdst + 0 * stride) * Store 4 word elements from 'in1' to (pdst + 1 * stride) * Store 4 word elements from 'in2' to (pdst + 2 * stride) * Store 4 word elements from 'in3' to (pdst + 3 * stride) */ #define ST_W2(RTYPE, in0, in1, pdst, stride) do { \ ST_W(RTYPE, in0, pdst); \ ST_W(RTYPE, in1, pdst + stride); \ } while (0) #define ST_UW2(...) ST_W2(v4u32, __VA_ARGS__) #define ST_SW2(...) ST_W2(v4i32, __VA_ARGS__) #define ST_W3(RTYPE, in0, in1, in2, pdst, stride) do { \ ST_W2(RTYPE, in0, in1, pdst, stride); \ ST_W(RTYPE, in2, pdst + 2 * stride); \ } while (0) #define ST_UW3(...) ST_W3(v4u32, __VA_ARGS__) #define ST_SW3(...) ST_W3(v4i32, __VA_ARGS__) #define ST_W4(RTYPE, in0, in1, in2, in3, pdst, stride) do { \ ST_W2(RTYPE, in0, in1, pdst, stride); \ ST_W2(RTYPE, in2, in3, pdst + 2 * stride, stride); \ } while (0) #define ST_UW4(...) ST_W4(v4u32, __VA_ARGS__) #define ST_SW4(...) ST_W4(v4i32, __VA_ARGS__) /* Description : Store vectors of 8 halfword elements with stride * Arguments : Inputs - in0, in1, pdst, stride * Details : Store 8 halfword elements from 'in0' to (pdst) * Store 8 halfword elements from 'in1' to (pdst + stride) */ #define ST_H2(RTYPE, in0, in1, pdst, stride) do { \ ST_H(RTYPE, in0, pdst); \ ST_H(RTYPE, in1, pdst + stride); \ } while (0) #define ST_UH2(...) ST_H2(v8u16, __VA_ARGS__) #define ST_SH2(...) ST_H2(v8i16, __VA_ARGS__) /* Description : Store 2x4 byte block to destination memory from input vector * Arguments : Inputs - in, stidx, pdst, stride * Details : Index 'stidx' halfword element from 'in' vector is copied to * the GP register and stored to (pdst) * Index 'stidx+1' halfword element from 'in' vector is copied to * the GP register and stored to (pdst + stride) * Index 'stidx+2' halfword element from 'in' vector is copied to * the GP register and stored to (pdst + 2 * stride) * Index 'stidx+3' halfword element from 'in' vector is copied to * the GP register and stored to (pdst + 3 * stride) */ #define ST2x4_UB(in, stidx, pdst, stride) do { \ uint8_t* pblk_2x4_m = (uint8_t*)pdst; \ const uint16_t out0_m = __msa_copy_s_h((v8i16)in, stidx); \ const uint16_t out1_m = __msa_copy_s_h((v8i16)in, stidx + 1); \ const uint16_t out2_m = __msa_copy_s_h((v8i16)in, stidx + 2); \ const uint16_t out3_m = __msa_copy_s_h((v8i16)in, stidx + 3); \ SH(out0_m, pblk_2x4_m); \ pblk_2x4_m += stride; \ SH(out1_m, pblk_2x4_m); \ pblk_2x4_m += stride; \ SH(out2_m, pblk_2x4_m); \ pblk_2x4_m += stride; \ SH(out3_m, pblk_2x4_m); \ } while (0) /* Description : Store 4x4 byte block to destination memory from input vector * Arguments : Inputs - in0, in1, pdst, stride * Details : 'Idx0' word element from input vector 'in0' is copied to the * GP register and stored to (pdst) * 'Idx1' word element from input vector 'in0' is copied to the * GP register and stored to (pdst + stride) * 'Idx2' word element from input vector 'in0' is copied to the * GP register and stored to (pdst + 2 * stride) * 'Idx3' word element from input vector 'in0' is copied to the * GP register and stored to (pdst + 3 * stride) */ #define ST4x4_UB(in0, in1, idx0, idx1, idx2, idx3, pdst, stride) do { \ uint8_t* const pblk_4x4_m = (uint8_t*)pdst; \ const uint32_t out0_m = __msa_copy_s_w((v4i32)in0, idx0); \ const uint32_t out1_m = __msa_copy_s_w((v4i32)in0, idx1); \ const uint32_t out2_m = __msa_copy_s_w((v4i32)in1, idx2); \ const uint32_t out3_m = __msa_copy_s_w((v4i32)in1, idx3); \ SW4(out0_m, out1_m, out2_m, out3_m, pblk_4x4_m, stride); \ } while (0) #define ST4x8_UB(in0, in1, pdst, stride) do { \ uint8_t* const pblk_4x8 = (uint8_t*)pdst; \ ST4x4_UB(in0, in0, 0, 1, 2, 3, pblk_4x8, stride); \ ST4x4_UB(in1, in1, 0, 1, 2, 3, pblk_4x8 + 4 * stride, stride); \ } while (0) /* Description : Immediate number of elements to slide * Arguments : Inputs - in0, in1, slide_val * Outputs - out * Return Type - as per RTYPE * Details : Byte elements from 'in1' vector are slid into 'in0' by * value specified in the 'slide_val' */ #define SLDI_B(RTYPE, in0, in1, slide_val) \ (RTYPE)__msa_sldi_b((v16i8)in0, (v16i8)in1, slide_val) \ #define SLDI_UB(...) SLDI_B(v16u8, __VA_ARGS__) #define SLDI_SB(...) SLDI_B(v16i8, __VA_ARGS__) #define SLDI_SH(...) SLDI_B(v8i16, __VA_ARGS__) /* Description : Shuffle byte vector elements as per mask vector * Arguments : Inputs - in0, in1, in2, in3, mask0, mask1 * Outputs - out0, out1 * Return Type - as per RTYPE * Details : Byte elements from 'in0' & 'in1' are copied selectively to * 'out0' as per control vector 'mask0' */ #define VSHF_B(RTYPE, in0, in1, mask) \ (RTYPE)__msa_vshf_b((v16i8)mask, (v16i8)in1, (v16i8)in0) #define VSHF_UB(...) VSHF_B(v16u8, __VA_ARGS__) #define VSHF_SB(...) VSHF_B(v16i8, __VA_ARGS__) #define VSHF_UH(...) VSHF_B(v8u16, __VA_ARGS__) #define VSHF_SH(...) VSHF_B(v8i16, __VA_ARGS__) #define VSHF_B2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1) do { \ out0 = VSHF_B(RTYPE, in0, in1, mask0); \ out1 = VSHF_B(RTYPE, in2, in3, mask1); \ } while (0) #define VSHF_B2_UB(...) VSHF_B2(v16u8, __VA_ARGS__) #define VSHF_B2_SB(...) VSHF_B2(v16i8, __VA_ARGS__) #define VSHF_B2_UH(...) VSHF_B2(v8u16, __VA_ARGS__) #define VSHF_B2_SH(...) VSHF_B2(v8i16, __VA_ARGS__) /* Description : Shuffle halfword vector elements as per mask vector * Arguments : Inputs - in0, in1, in2, in3, mask0, mask1 * Outputs - out0, out1 * Return Type - as per RTYPE * Details : halfword elements from 'in0' & 'in1' are copied selectively to * 'out0' as per control vector 'mask0' */ #define VSHF_H2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1) do { \ out0 = (RTYPE)__msa_vshf_h((v8i16)mask0, (v8i16)in1, (v8i16)in0); \ out1 = (RTYPE)__msa_vshf_h((v8i16)mask1, (v8i16)in3, (v8i16)in2); \ } while (0) #define VSHF_H2_UH(...) VSHF_H2(v8u16, __VA_ARGS__) #define VSHF_H2_SH(...) VSHF_H2(v8i16, __VA_ARGS__) /* Description : Dot product of byte vector elements * Arguments : Inputs - mult0, mult1, cnst0, cnst1 * Outputs - out0, out1 * Return Type - as per RTYPE * Details : Signed byte elements from 'mult0' are multiplied with * signed byte elements from 'cnst0' producing a result * twice the size of input i.e. signed halfword. * The multiplication result of adjacent odd-even elements * are added together and written to the 'out0' vector */ #define DOTP_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) do { \ out0 = (RTYPE)__msa_dotp_s_h((v16i8)mult0, (v16i8)cnst0); \ out1 = (RTYPE)__msa_dotp_s_h((v16i8)mult1, (v16i8)cnst1); \ } while (0) #define DOTP_SB2_SH(...) DOTP_SB2(v8i16, __VA_ARGS__) /* Description : Dot product of halfword vector elements * Arguments : Inputs - mult0, mult1, cnst0, cnst1 * Outputs - out0, out1 * Return Type - as per RTYPE * Details : Signed halfword elements from 'mult0' are multiplied with * signed halfword elements from 'cnst0' producing a result * twice the size of input i.e. signed word. * The multiplication result of adjacent odd-even elements * are added together and written to the 'out0' vector */ #define DOTP_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) do { \ out0 = (RTYPE)__msa_dotp_s_w((v8i16)mult0, (v8i16)cnst0); \ out1 = (RTYPE)__msa_dotp_s_w((v8i16)mult1, (v8i16)cnst1); \ } while (0) #define DOTP_SH2_SW(...) DOTP_SH2(v4i32, __VA_ARGS__) /* Description : Dot product of unsigned word vector elements * Arguments : Inputs - mult0, mult1, cnst0, cnst1 * Outputs - out0, out1 * Return Type - as per RTYPE * Details : Unsigned word elements from 'mult0' are multiplied with * unsigned word elements from 'cnst0' producing a result * twice the size of input i.e. unsigned double word. * The multiplication result of adjacent odd-even elements * are added together and written to the 'out0' vector */ #define DOTP_UW2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) do { \ out0 = (RTYPE)__msa_dotp_u_d((v4u32)mult0, (v4u32)cnst0); \ out1 = (RTYPE)__msa_dotp_u_d((v4u32)mult1, (v4u32)cnst1); \ } while (0) #define DOTP_UW2_UD(...) DOTP_UW2(v2u64, __VA_ARGS__) /* Description : Dot product & addition of halfword vector elements * Arguments : Inputs - mult0, mult1, cnst0, cnst1 * Outputs - out0, out1 * Return Type - as per RTYPE * Details : Signed halfword elements from 'mult0' are multiplied with * signed halfword elements from 'cnst0' producing a result * twice the size of input i.e. signed word. * The multiplication result of adjacent odd-even elements * are added to the 'out0' vector */ #define DPADD_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) do { \ out0 = (RTYPE)__msa_dpadd_s_w((v4i32)out0, (v8i16)mult0, (v8i16)cnst0); \ out1 = (RTYPE)__msa_dpadd_s_w((v4i32)out1, (v8i16)mult1, (v8i16)cnst1); \ } while (0) #define DPADD_SH2_SW(...) DPADD_SH2(v4i32, __VA_ARGS__) /* Description : Clips all signed halfword elements of input vector * between 0 & 255 * Arguments : Input/output - val * Return Type - signed halfword */ #define CLIP_SH_0_255(val) do { \ const v8i16 max_m = __msa_ldi_h(255); \ val = __msa_maxi_s_h((v8i16)val, 0); \ val = __msa_min_s_h(max_m, (v8i16)val); \ } while (0) #define CLIP_SH2_0_255(in0, in1) do { \ CLIP_SH_0_255(in0); \ CLIP_SH_0_255(in1); \ } while (0) #define CLIP_SH4_0_255(in0, in1, in2, in3) do { \ CLIP_SH2_0_255(in0, in1); \ CLIP_SH2_0_255(in2, in3); \ } while (0) /* Description : Clips all unsigned halfword elements of input vector * between 0 & 255 * Arguments : Input - in * Output - out_m * Return Type - unsigned halfword */ #define CLIP_UH_0_255(in) do { \ const v8u16 max_m = (v8u16)__msa_ldi_h(255); \ in = __msa_maxi_u_h((v8u16) in, 0); \ in = __msa_min_u_h((v8u16) max_m, (v8u16) in); \ } while (0) #define CLIP_UH2_0_255(in0, in1) do { \ CLIP_UH_0_255(in0); \ CLIP_UH_0_255(in1); \ } while (0) /* Description : Clips all signed word elements of input vector * between 0 & 255 * Arguments : Input/output - val * Return Type - signed word */ #define CLIP_SW_0_255(val) do { \ const v4i32 max_m = __msa_ldi_w(255); \ val = __msa_maxi_s_w((v4i32)val, 0); \ val = __msa_min_s_w(max_m, (v4i32)val); \ } while (0) #define CLIP_SW4_0_255(in0, in1, in2, in3) do { \ CLIP_SW_0_255(in0); \ CLIP_SW_0_255(in1); \ CLIP_SW_0_255(in2); \ CLIP_SW_0_255(in3); \ } while (0) /* Description : Horizontal addition of 4 signed word elements of input vector * Arguments : Input - in (signed word vector) * Output - sum_m (i32 sum) * Return Type - signed word (GP) * Details : 4 signed word elements of 'in' vector are added together and * the resulting integer sum is returned */ static WEBP_INLINE int32_t func_hadd_sw_s32(v4i32 in) { const v2i64 res0_m = __msa_hadd_s_d((v4i32)in, (v4i32)in); const v2i64 res1_m = __msa_splati_d(res0_m, 1); const v2i64 out = res0_m + res1_m; int32_t sum_m = __msa_copy_s_w((v4i32)out, 0); return sum_m; } #define HADD_SW_S32(in) func_hadd_sw_s32(in) /* Description : Horizontal addition of 8 signed halfword elements * Arguments : Input - in (signed halfword vector) * Output - sum_m (s32 sum) * Return Type - signed word * Details : 8 signed halfword elements of input vector are added * together and the resulting integer sum is returned */ static WEBP_INLINE int32_t func_hadd_sh_s32(v8i16 in) { const v4i32 res = __msa_hadd_s_w(in, in); const v2i64 res0 = __msa_hadd_s_d(res, res); const v2i64 res1 = __msa_splati_d(res0, 1); const v2i64 res2 = res0 + res1; const int32_t sum_m = __msa_copy_s_w((v4i32)res2, 0); return sum_m; } #define HADD_SH_S32(in) func_hadd_sh_s32(in) /* Description : Horizontal addition of 8 unsigned halfword elements * Arguments : Input - in (unsigned halfword vector) * Output - sum_m (u32 sum) * Return Type - unsigned word * Details : 8 unsigned halfword elements of input vector are added * together and the resulting integer sum is returned */ static WEBP_INLINE uint32_t func_hadd_uh_u32(v8u16 in) { uint32_t sum_m; const v4u32 res_m = __msa_hadd_u_w(in, in); v2u64 res0_m = __msa_hadd_u_d(res_m, res_m); v2u64 res1_m = (v2u64)__msa_splati_d((v2i64)res0_m, 1); res0_m = res0_m + res1_m; sum_m = __msa_copy_s_w((v4i32)res0_m, 0); return sum_m; } #define HADD_UH_U32(in) func_hadd_uh_u32(in) /* Description : Horizontal addition of signed half word vector elements Arguments : Inputs - in0, in1 Outputs - out0, out1 Return Type - as per RTYPE Details : Each signed odd half word element from 'in0' is added to even signed half word element from 'in0' (pairwise) and the halfword result is written in 'out0' */ #define HADD_SH2(RTYPE, in0, in1, out0, out1) do { \ out0 = (RTYPE)__msa_hadd_s_w((v8i16)in0, (v8i16)in0); \ out1 = (RTYPE)__msa_hadd_s_w((v8i16)in1, (v8i16)in1); \ } while (0) #define HADD_SH2_SW(...) HADD_SH2(v4i32, __VA_ARGS__) #define HADD_SH4(RTYPE, in0, in1, in2, in3, out0, out1, out2, out3) do { \ HADD_SH2(RTYPE, in0, in1, out0, out1); \ HADD_SH2(RTYPE, in2, in3, out2, out3); \ } while (0) #define HADD_SH4_SW(...) HADD_SH4(v4i32, __VA_ARGS__) /* Description : Horizontal subtraction of unsigned byte vector elements * Arguments : Inputs - in0, in1 * Outputs - out0, out1 * Return Type - as per RTYPE * Details : Each unsigned odd byte element from 'in0' is subtracted from * even unsigned byte element from 'in0' (pairwise) and the * halfword result is written to 'out0' */ #define HSUB_UB2(RTYPE, in0, in1, out0, out1) do { \ out0 = (RTYPE)__msa_hsub_u_h((v16u8)in0, (v16u8)in0); \ out1 = (RTYPE)__msa_hsub_u_h((v16u8)in1, (v16u8)in1); \ } while (0) #define HSUB_UB2_UH(...) HSUB_UB2(v8u16, __VA_ARGS__) #define HSUB_UB2_SH(...) HSUB_UB2(v8i16, __VA_ARGS__) #define HSUB_UB2_SW(...) HSUB_UB2(v4i32, __VA_ARGS__) /* Description : Set element n input vector to GPR value * Arguments : Inputs - in0, in1, in2, in3 * Output - out * Return Type - as per RTYPE * Details : Set element 0 in vector 'out' to value specified in 'in0' */ #define INSERT_W2(RTYPE, in0, in1, out) do { \ out = (RTYPE)__msa_insert_w((v4i32)out, 0, in0); \ out = (RTYPE)__msa_insert_w((v4i32)out, 1, in1); \ } while (0) #define INSERT_W2_UB(...) INSERT_W2(v16u8, __VA_ARGS__) #define INSERT_W2_SB(...) INSERT_W2(v16i8, __VA_ARGS__) #define INSERT_W4(RTYPE, in0, in1, in2, in3, out) do { \ out = (RTYPE)__msa_insert_w((v4i32)out, 0, in0); \ out = (RTYPE)__msa_insert_w((v4i32)out, 1, in1); \ out = (RTYPE)__msa_insert_w((v4i32)out, 2, in2); \ out = (RTYPE)__msa_insert_w((v4i32)out, 3, in3); \ } while (0) #define INSERT_W4_UB(...) INSERT_W4(v16u8, __VA_ARGS__) #define INSERT_W4_SB(...) INSERT_W4(v16i8, __VA_ARGS__) #define INSERT_W4_SW(...) INSERT_W4(v4i32, __VA_ARGS__) /* Description : Set element n of double word input vector to GPR value * Arguments : Inputs - in0, in1 * Output - out * Return Type - as per RTYPE * Details : Set element 0 in vector 'out' to GPR value specified in 'in0' * Set element 1 in vector 'out' to GPR value specified in 'in1' */ #define INSERT_D2(RTYPE, in0, in1, out) do { \ out = (RTYPE)__msa_insert_d((v2i64)out, 0, in0); \ out = (RTYPE)__msa_insert_d((v2i64)out, 1, in1); \ } while (0) #define INSERT_D2_UB(...) INSERT_D2(v16u8, __VA_ARGS__) #define INSERT_D2_SB(...) INSERT_D2(v16i8, __VA_ARGS__) /* Description : Interleave even byte elements from vectors * Arguments : Inputs - in0, in1, in2, in3 * Outputs - out0, out1 * Return Type - as per RTYPE * Details : Even byte elements of 'in0' and 'in1' are interleaved * and written to 'out0' */ #define ILVEV_B2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ out0 = (RTYPE)__msa_ilvev_b((v16i8)in1, (v16i8)in0); \ out1 = (RTYPE)__msa_ilvev_b((v16i8)in3, (v16i8)in2); \ } while (0) #define ILVEV_B2_UB(...) ILVEV_B2(v16u8, __VA_ARGS__) #define ILVEV_B2_SB(...) ILVEV_B2(v16i8, __VA_ARGS__) #define ILVEV_B2_UH(...) ILVEV_B2(v8u16, __VA_ARGS__) #define ILVEV_B2_SH(...) ILVEV_B2(v8i16, __VA_ARGS__) #define ILVEV_B2_SD(...) ILVEV_B2(v2i64, __VA_ARGS__) /* Description : Interleave odd byte elements from vectors * Arguments : Inputs - in0, in1, in2, in3 * Outputs - out0, out1 * Return Type - as per RTYPE * Details : Odd byte elements of 'in0' and 'in1' are interleaved * and written to 'out0' */ #define ILVOD_B2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ out0 = (RTYPE)__msa_ilvod_b((v16i8)in1, (v16i8)in0); \ out1 = (RTYPE)__msa_ilvod_b((v16i8)in3, (v16i8)in2); \ } while (0) #define ILVOD_B2_UB(...) ILVOD_B2(v16u8, __VA_ARGS__) #define ILVOD_B2_SB(...) ILVOD_B2(v16i8, __VA_ARGS__) #define ILVOD_B2_UH(...) ILVOD_B2(v8u16, __VA_ARGS__) #define ILVOD_B2_SH(...) ILVOD_B2(v8i16, __VA_ARGS__) #define ILVOD_B2_SD(...) ILVOD_B2(v2i64, __VA_ARGS__) /* Description : Interleave even halfword elements from vectors * Arguments : Inputs - in0, in1, in2, in3 * Outputs - out0, out1 * Return Type - as per RTYPE * Details : Even halfword elements of 'in0' and 'in1' are interleaved * and written to 'out0' */ #define ILVEV_H2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ out0 = (RTYPE)__msa_ilvev_h((v8i16)in1, (v8i16)in0); \ out1 = (RTYPE)__msa_ilvev_h((v8i16)in3, (v8i16)in2); \ } while (0) #define ILVEV_H2_UB(...) ILVEV_H2(v16u8, __VA_ARGS__) #define ILVEV_H2_UH(...) ILVEV_H2(v8u16, __VA_ARGS__) #define ILVEV_H2_SH(...) ILVEV_H2(v8i16, __VA_ARGS__) #define ILVEV_H2_SW(...) ILVEV_H2(v4i32, __VA_ARGS__) /* Description : Interleave odd halfword elements from vectors * Arguments : Inputs - in0, in1, in2, in3 * Outputs - out0, out1 * Return Type - as per RTYPE * Details : Odd halfword elements of 'in0' and 'in1' are interleaved * and written to 'out0' */ #define ILVOD_H2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ out0 = (RTYPE)__msa_ilvod_h((v8i16)in1, (v8i16)in0); \ out1 = (RTYPE)__msa_ilvod_h((v8i16)in3, (v8i16)in2); \ } while (0) #define ILVOD_H2_UB(...) ILVOD_H2(v16u8, __VA_ARGS__) #define ILVOD_H2_UH(...) ILVOD_H2(v8u16, __VA_ARGS__) #define ILVOD_H2_SH(...) ILVOD_H2(v8i16, __VA_ARGS__) #define ILVOD_H2_SW(...) ILVOD_H2(v4i32, __VA_ARGS__) /* Description : Interleave even word elements from vectors * Arguments : Inputs - in0, in1, in2, in3 * Outputs - out0, out1 * Return Type - as per RTYPE * Details : Even word elements of 'in0' and 'in1' are interleaved * and written to 'out0' */ #define ILVEV_W2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ out0 = (RTYPE)__msa_ilvev_w((v4i32)in1, (v4i32)in0); \ out1 = (RTYPE)__msa_ilvev_w((v4i32)in3, (v4i32)in2); \ } while (0) #define ILVEV_W2_UB(...) ILVEV_W2(v16u8, __VA_ARGS__) #define ILVEV_W2_SB(...) ILVEV_W2(v16i8, __VA_ARGS__) #define ILVEV_W2_UH(...) ILVEV_W2(v8u16, __VA_ARGS__) #define ILVEV_W2_SD(...) ILVEV_W2(v2i64, __VA_ARGS__) /* Description : Interleave even-odd word elements from vectors * Arguments : Inputs - in0, in1, in2, in3 * Outputs - out0, out1 * Return Type - as per RTYPE * Details : Even word elements of 'in0' and 'in1' are interleaved * and written to 'out0' * Odd word elements of 'in2' and 'in3' are interleaved * and written to 'out1' */ #define ILVEVOD_W2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ out0 = (RTYPE)__msa_ilvev_w((v4i32)in1, (v4i32)in0); \ out1 = (RTYPE)__msa_ilvod_w((v4i32)in3, (v4i32)in2); \ } while (0) #define ILVEVOD_W2_UB(...) ILVEVOD_W2(v16u8, __VA_ARGS__) #define ILVEVOD_W2_UH(...) ILVEVOD_W2(v8u16, __VA_ARGS__) #define ILVEVOD_W2_SH(...) ILVEVOD_W2(v8i16, __VA_ARGS__) #define ILVEVOD_W2_SW(...) ILVEVOD_W2(v4i32, __VA_ARGS__) /* Description : Interleave even-odd half-word elements from vectors * Arguments : Inputs - in0, in1, in2, in3 * Outputs - out0, out1 * Return Type - as per RTYPE * Details : Even half-word elements of 'in0' and 'in1' are interleaved * and written to 'out0' * Odd half-word elements of 'in2' and 'in3' are interleaved * and written to 'out1' */ #define ILVEVOD_H2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ out0 = (RTYPE)__msa_ilvev_h((v8i16)in1, (v8i16)in0); \ out1 = (RTYPE)__msa_ilvod_h((v8i16)in3, (v8i16)in2); \ } while (0) #define ILVEVOD_H2_UB(...) ILVEVOD_H2(v16u8, __VA_ARGS__) #define ILVEVOD_H2_UH(...) ILVEVOD_H2(v8u16, __VA_ARGS__) #define ILVEVOD_H2_SH(...) ILVEVOD_H2(v8i16, __VA_ARGS__) #define ILVEVOD_H2_SW(...) ILVEVOD_H2(v4i32, __VA_ARGS__) /* Description : Interleave even double word elements from vectors * Arguments : Inputs - in0, in1, in2, in3 * Outputs - out0, out1 * Return Type - as per RTYPE * Details : Even double word elements of 'in0' and 'in1' are interleaved * and written to 'out0' */ #define ILVEV_D2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ out0 = (RTYPE)__msa_ilvev_d((v2i64)in1, (v2i64)in0); \ out1 = (RTYPE)__msa_ilvev_d((v2i64)in3, (v2i64)in2); \ } while (0) #define ILVEV_D2_UB(...) ILVEV_D2(v16u8, __VA_ARGS__) #define ILVEV_D2_SB(...) ILVEV_D2(v16i8, __VA_ARGS__) #define ILVEV_D2_SW(...) ILVEV_D2(v4i32, __VA_ARGS__) #define ILVEV_D2_SD(...) ILVEV_D2(v2i64, __VA_ARGS__) /* Description : Interleave left half of byte elements from vectors * Arguments : Inputs - in0, in1, in2, in3 * Outputs - out0, out1 * Return Type - as per RTYPE * Details : Left half of byte elements of 'in0' and 'in1' are interleaved * and written to 'out0'. */ #define ILVL_B2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ out0 = (RTYPE)__msa_ilvl_b((v16i8)in0, (v16i8)in1); \ out1 = (RTYPE)__msa_ilvl_b((v16i8)in2, (v16i8)in3); \ } while (0) #define ILVL_B2_UB(...) ILVL_B2(v16u8, __VA_ARGS__) #define ILVL_B2_SB(...) ILVL_B2(v16i8, __VA_ARGS__) #define ILVL_B2_UH(...) ILVL_B2(v8u16, __VA_ARGS__) #define ILVL_B2_SH(...) ILVL_B2(v8i16, __VA_ARGS__) #define ILVL_B2_SW(...) ILVL_B2(v4i32, __VA_ARGS__) /* Description : Interleave right half of byte elements from vectors * Arguments : Inputs - in0, in1, in2, in3 * Outputs - out0, out1 * Return Type - as per RTYPE * Details : Right half of byte elements of 'in0' and 'in1' are interleaved * and written to out0. */ #define ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ out0 = (RTYPE)__msa_ilvr_b((v16i8)in0, (v16i8)in1); \ out1 = (RTYPE)__msa_ilvr_b((v16i8)in2, (v16i8)in3); \ } while (0) #define ILVR_B2_UB(...) ILVR_B2(v16u8, __VA_ARGS__) #define ILVR_B2_SB(...) ILVR_B2(v16i8, __VA_ARGS__) #define ILVR_B2_UH(...) ILVR_B2(v8u16, __VA_ARGS__) #define ILVR_B2_SH(...) ILVR_B2(v8i16, __VA_ARGS__) #define ILVR_B2_SW(...) ILVR_B2(v4i32, __VA_ARGS__) #define ILVR_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ out0, out1, out2, out3) do { \ ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1); \ ILVR_B2(RTYPE, in4, in5, in6, in7, out2, out3); \ } while (0) #define ILVR_B4_UB(...) ILVR_B4(v16u8, __VA_ARGS__) #define ILVR_B4_SB(...) ILVR_B4(v16i8, __VA_ARGS__) #define ILVR_B4_UH(...) ILVR_B4(v8u16, __VA_ARGS__) #define ILVR_B4_SH(...) ILVR_B4(v8i16, __VA_ARGS__) #define ILVR_B4_SW(...) ILVR_B4(v4i32, __VA_ARGS__) /* Description : Interleave right half of halfword elements from vectors * Arguments : Inputs - in0, in1, in2, in3 * Outputs - out0, out1 * Return Type - as per RTYPE * Details : Right half of halfword elements of 'in0' and 'in1' are * interleaved and written to 'out0'. */ #define ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ out0 = (RTYPE)__msa_ilvr_h((v8i16)in0, (v8i16)in1); \ out1 = (RTYPE)__msa_ilvr_h((v8i16)in2, (v8i16)in3); \ } while (0) #define ILVR_H2_UB(...) ILVR_H2(v16u8, __VA_ARGS__) #define ILVR_H2_SH(...) ILVR_H2(v8i16, __VA_ARGS__) #define ILVR_H2_SW(...) ILVR_H2(v4i32, __VA_ARGS__) #define ILVR_H4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ out0, out1, out2, out3) do { \ ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1); \ ILVR_H2(RTYPE, in4, in5, in6, in7, out2, out3); \ } while (0) #define ILVR_H4_UB(...) ILVR_H4(v16u8, __VA_ARGS__) #define ILVR_H4_SH(...) ILVR_H4(v8i16, __VA_ARGS__) #define ILVR_H4_SW(...) ILVR_H4(v4i32, __VA_ARGS__) /* Description : Interleave right half of double word elements from vectors * Arguments : Inputs - in0, in1, in2, in3 * Outputs - out0, out1 * Return Type - as per RTYPE * Details : Right half of double word elements of 'in0' and 'in1' are * interleaved and written to 'out0'. */ #define ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ out0 = (RTYPE)__msa_ilvr_d((v2i64)in0, (v2i64)in1); \ out1 = (RTYPE)__msa_ilvr_d((v2i64)in2, (v2i64)in3); \ } while (0) #define ILVR_D2_UB(...) ILVR_D2(v16u8, __VA_ARGS__) #define ILVR_D2_SB(...) ILVR_D2(v16i8, __VA_ARGS__) #define ILVR_D2_SH(...) ILVR_D2(v8i16, __VA_ARGS__) #define ILVR_D4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ out0, out1, out2, out3) do { \ ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1); \ ILVR_D2(RTYPE, in4, in5, in6, in7, out2, out3); \ } while (0) #define ILVR_D4_SB(...) ILVR_D4(v16i8, __VA_ARGS__) #define ILVR_D4_UB(...) ILVR_D4(v16u8, __VA_ARGS__) /* Description : Interleave both left and right half of input vectors * Arguments : Inputs - in0, in1 * Outputs - out0, out1 * Return Type - as per RTYPE * Details : Right half of byte elements from 'in0' and 'in1' are * interleaved and written to 'out0' */ #define ILVRL_B2(RTYPE, in0, in1, out0, out1) do { \ out0 = (RTYPE)__msa_ilvr_b((v16i8)in0, (v16i8)in1); \ out1 = (RTYPE)__msa_ilvl_b((v16i8)in0, (v16i8)in1); \ } while (0) #define ILVRL_B2_UB(...) ILVRL_B2(v16u8, __VA_ARGS__) #define ILVRL_B2_SB(...) ILVRL_B2(v16i8, __VA_ARGS__) #define ILVRL_B2_UH(...) ILVRL_B2(v8u16, __VA_ARGS__) #define ILVRL_B2_SH(...) ILVRL_B2(v8i16, __VA_ARGS__) #define ILVRL_B2_SW(...) ILVRL_B2(v4i32, __VA_ARGS__) #define ILVRL_H2(RTYPE, in0, in1, out0, out1) do { \ out0 = (RTYPE)__msa_ilvr_h((v8i16)in0, (v8i16)in1); \ out1 = (RTYPE)__msa_ilvl_h((v8i16)in0, (v8i16)in1); \ } while (0) #define ILVRL_H2_UB(...) ILVRL_H2(v16u8, __VA_ARGS__) #define ILVRL_H2_SB(...) ILVRL_H2(v16i8, __VA_ARGS__) #define ILVRL_H2_SH(...) ILVRL_H2(v8i16, __VA_ARGS__) #define ILVRL_H2_SW(...) ILVRL_H2(v4i32, __VA_ARGS__) #define ILVRL_H2_UW(...) ILVRL_H2(v4u32, __VA_ARGS__) #define ILVRL_W2(RTYPE, in0, in1, out0, out1) do { \ out0 = (RTYPE)__msa_ilvr_w((v4i32)in0, (v4i32)in1); \ out1 = (RTYPE)__msa_ilvl_w((v4i32)in0, (v4i32)in1); \ } while (0) #define ILVRL_W2_UB(...) ILVRL_W2(v16u8, __VA_ARGS__) #define ILVRL_W2_SH(...) ILVRL_W2(v8i16, __VA_ARGS__) #define ILVRL_W2_SW(...) ILVRL_W2(v4i32, __VA_ARGS__) #define ILVRL_W2_UW(...) ILVRL_W2(v4u32, __VA_ARGS__) /* Description : Pack even byte elements of vector pairs * Arguments : Inputs - in0, in1, in2, in3 * Outputs - out0, out1 * Return Type - as per RTYPE * Details : Even byte elements of 'in0' are copied to the left half of * 'out0' & even byte elements of 'in1' are copied to the right * half of 'out0'. */ #define PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ out0 = (RTYPE)__msa_pckev_b((v16i8)in0, (v16i8)in1); \ out1 = (RTYPE)__msa_pckev_b((v16i8)in2, (v16i8)in3); \ } while (0) #define PCKEV_B2_SB(...) PCKEV_B2(v16i8, __VA_ARGS__) #define PCKEV_B2_UB(...) PCKEV_B2(v16u8, __VA_ARGS__) #define PCKEV_B2_SH(...) PCKEV_B2(v8i16, __VA_ARGS__) #define PCKEV_B2_SW(...) PCKEV_B2(v4i32, __VA_ARGS__) #define PCKEV_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ out0, out1, out2, out3) do { \ PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1); \ PCKEV_B2(RTYPE, in4, in5, in6, in7, out2, out3); \ } while (0) #define PCKEV_B4_SB(...) PCKEV_B4(v16i8, __VA_ARGS__) #define PCKEV_B4_UB(...) PCKEV_B4(v16u8, __VA_ARGS__) #define PCKEV_B4_SH(...) PCKEV_B4(v8i16, __VA_ARGS__) #define PCKEV_B4_SW(...) PCKEV_B4(v4i32, __VA_ARGS__) /* Description : Pack even halfword elements of vector pairs * Arguments : Inputs - in0, in1, in2, in3 * Outputs - out0, out1 * Return Type - as per RTYPE * Details : Even halfword elements of 'in0' are copied to the left half of * 'out0' & even halfword elements of 'in1' are copied to the * right half of 'out0'. */ #define PCKEV_H2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ out0 = (RTYPE)__msa_pckev_h((v8i16)in0, (v8i16)in1); \ out1 = (RTYPE)__msa_pckev_h((v8i16)in2, (v8i16)in3); \ } while (0) #define PCKEV_H2_UH(...) PCKEV_H2(v8u16, __VA_ARGS__) #define PCKEV_H2_SH(...) PCKEV_H2(v8i16, __VA_ARGS__) #define PCKEV_H2_SW(...) PCKEV_H2(v4i32, __VA_ARGS__) #define PCKEV_H2_UW(...) PCKEV_H2(v4u32, __VA_ARGS__) /* Description : Pack even word elements of vector pairs * Arguments : Inputs - in0, in1, in2, in3 * Outputs - out0, out1 * Return Type - as per RTYPE * Details : Even word elements of 'in0' are copied to the left half of * 'out0' & even word elements of 'in1' are copied to the * right half of 'out0'. */ #define PCKEV_W2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ out0 = (RTYPE)__msa_pckev_w((v4i32)in0, (v4i32)in1); \ out1 = (RTYPE)__msa_pckev_w((v4i32)in2, (v4i32)in3); \ } while (0) #define PCKEV_W2_UH(...) PCKEV_W2(v8u16, __VA_ARGS__) #define PCKEV_W2_SH(...) PCKEV_W2(v8i16, __VA_ARGS__) #define PCKEV_W2_SW(...) PCKEV_W2(v4i32, __VA_ARGS__) #define PCKEV_W2_UW(...) PCKEV_W2(v4u32, __VA_ARGS__) /* Description : Pack odd halfword elements of vector pairs * Arguments : Inputs - in0, in1, in2, in3 * Outputs - out0, out1 * Return Type - as per RTYPE * Details : Odd halfword elements of 'in0' are copied to the left half of * 'out0' & odd halfword elements of 'in1' are copied to the * right half of 'out0'. */ #define PCKOD_H2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ out0 = (RTYPE)__msa_pckod_h((v8i16)in0, (v8i16)in1); \ out1 = (RTYPE)__msa_pckod_h((v8i16)in2, (v8i16)in3); \ } while (0) #define PCKOD_H2_UH(...) PCKOD_H2(v8u16, __VA_ARGS__) #define PCKOD_H2_SH(...) PCKOD_H2(v8i16, __VA_ARGS__) #define PCKOD_H2_SW(...) PCKOD_H2(v4i32, __VA_ARGS__) #define PCKOD_H2_UW(...) PCKOD_H2(v4u32, __VA_ARGS__) /* Description : Arithmetic immediate shift right all elements of word vector * Arguments : Inputs - in0, in1, shift * Outputs - in place operation * Return Type - as per input vector RTYPE * Details : Each element of vector 'in0' is right shifted by 'shift' and * the result is written in-place. 'shift' is a GP variable. */ #define SRAI_W2(RTYPE, in0, in1, shift_val) do { \ in0 = (RTYPE)SRAI_W(in0, shift_val); \ in1 = (RTYPE)SRAI_W(in1, shift_val); \ } while (0) #define SRAI_W2_SW(...) SRAI_W2(v4i32, __VA_ARGS__) #define SRAI_W2_UW(...) SRAI_W2(v4u32, __VA_ARGS__) #define SRAI_W4(RTYPE, in0, in1, in2, in3, shift_val) do { \ SRAI_W2(RTYPE, in0, in1, shift_val); \ SRAI_W2(RTYPE, in2, in3, shift_val); \ } while (0) #define SRAI_W4_SW(...) SRAI_W4(v4i32, __VA_ARGS__) #define SRAI_W4_UW(...) SRAI_W4(v4u32, __VA_ARGS__) /* Description : Arithmetic shift right all elements of half-word vector * Arguments : Inputs - in0, in1, shift * Outputs - in place operation * Return Type - as per input vector RTYPE * Details : Each element of vector 'in0' is right shifted by 'shift' and * the result is written in-place. 'shift' is a GP variable. */ #define SRAI_H2(RTYPE, in0, in1, shift_val) do { \ in0 = (RTYPE)SRAI_H(in0, shift_val); \ in1 = (RTYPE)SRAI_H(in1, shift_val); \ } while (0) #define SRAI_H2_SH(...) SRAI_H2(v8i16, __VA_ARGS__) #define SRAI_H2_UH(...) SRAI_H2(v8u16, __VA_ARGS__) /* Description : Arithmetic rounded shift right all elements of word vector * Arguments : Inputs - in0, in1, shift * Outputs - in place operation * Return Type - as per input vector RTYPE * Details : Each element of vector 'in0' is right shifted by 'shift' and * the result is written in-place. 'shift' is a GP variable. */ #define SRARI_W2(RTYPE, in0, in1, shift) do { \ in0 = (RTYPE)__msa_srari_w((v4i32)in0, shift); \ in1 = (RTYPE)__msa_srari_w((v4i32)in1, shift); \ } while (0) #define SRARI_W2_SW(...) SRARI_W2(v4i32, __VA_ARGS__) #define SRARI_W4(RTYPE, in0, in1, in2, in3, shift) do { \ SRARI_W2(RTYPE, in0, in1, shift); \ SRARI_W2(RTYPE, in2, in3, shift); \ } while (0) #define SRARI_W4_SH(...) SRARI_W4(v8i16, __VA_ARGS__) #define SRARI_W4_UW(...) SRARI_W4(v4u32, __VA_ARGS__) #define SRARI_W4_SW(...) SRARI_W4(v4i32, __VA_ARGS__) /* Description : Shift right arithmetic rounded double words * Arguments : Inputs - in0, in1, shift * Outputs - in place operation * Return Type - as per RTYPE * Details : Each element of vector 'in0' is shifted right arithmetically by * the number of bits in the corresponding element in the vector * 'shift'. The last discarded bit is added to shifted value for * rounding and the result is written in-place. * 'shift' is a vector. */ #define SRAR_D2(RTYPE, in0, in1, shift) do { \ in0 = (RTYPE)__msa_srar_d((v2i64)in0, (v2i64)shift); \ in1 = (RTYPE)__msa_srar_d((v2i64)in1, (v2i64)shift); \ } while (0) #define SRAR_D2_SW(...) SRAR_D2(v4i32, __VA_ARGS__) #define SRAR_D2_SD(...) SRAR_D2(v2i64, __VA_ARGS__) #define SRAR_D2_UD(...) SRAR_D2(v2u64, __VA_ARGS__) #define SRAR_D4(RTYPE, in0, in1, in2, in3, shift) do { \ SRAR_D2(RTYPE, in0, in1, shift); \ SRAR_D2(RTYPE, in2, in3, shift); \ } while (0) #define SRAR_D4_SD(...) SRAR_D4(v2i64, __VA_ARGS__) #define SRAR_D4_UD(...) SRAR_D4(v2u64, __VA_ARGS__) /* Description : Addition of 2 pairs of half-word vectors * Arguments : Inputs - in0, in1, in2, in3 * Outputs - out0, out1 * Details : Each element in 'in0' is added to 'in1' and result is written * to 'out0'. */ #define ADDVI_H2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ out0 = (RTYPE)ADDVI_H(in0, in1); \ out1 = (RTYPE)ADDVI_H(in2, in3); \ } while (0) #define ADDVI_H2_SH(...) ADDVI_H2(v8i16, __VA_ARGS__) #define ADDVI_H2_UH(...) ADDVI_H2(v8u16, __VA_ARGS__) /* Description : Addition of 2 pairs of word vectors * Arguments : Inputs - in0, in1, in2, in3 * Outputs - out0, out1 * Details : Each element in 'in0' is added to 'in1' and result is written * to 'out0'. */ #define ADDVI_W2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ out0 = (RTYPE)ADDVI_W(in0, in1); \ out1 = (RTYPE)ADDVI_W(in2, in3); \ } while (0) #define ADDVI_W2_SW(...) ADDVI_W2(v4i32, __VA_ARGS__) /* Description : Fill 2 pairs of word vectors with GP registers * Arguments : Inputs - in0, in1 * Outputs - out0, out1 * Details : GP register in0 is replicated in each word element of out0 * GP register in1 is replicated in each word element of out1 */ #define FILL_W2(RTYPE, in0, in1, out0, out1) do { \ out0 = (RTYPE)__msa_fill_w(in0); \ out1 = (RTYPE)__msa_fill_w(in1); \ } while (0) #define FILL_W2_SW(...) FILL_W2(v4i32, __VA_ARGS__) /* Description : Addition of 2 pairs of vectors * Arguments : Inputs - in0, in1, in2, in3 * Outputs - out0, out1 * Details : Each element in 'in0' is added to 'in1' and result is written * to 'out0'. */ #define ADD2(in0, in1, in2, in3, out0, out1) do { \ out0 = in0 + in1; \ out1 = in2 + in3; \ } while (0) #define ADD4(in0, in1, in2, in3, in4, in5, in6, in7, \ out0, out1, out2, out3) do { \ ADD2(in0, in1, in2, in3, out0, out1); \ ADD2(in4, in5, in6, in7, out2, out3); \ } while (0) /* Description : Subtraction of 2 pairs of vectors * Arguments : Inputs - in0, in1, in2, in3 * Outputs - out0, out1 * Details : Each element in 'in1' is subtracted from 'in0' and result is * written to 'out0'. */ #define SUB2(in0, in1, in2, in3, out0, out1) do { \ out0 = in0 - in1; \ out1 = in2 - in3; \ } while (0) #define SUB3(in0, in1, in2, in3, in4, in5, out0, out1, out2) do { \ out0 = in0 - in1; \ out1 = in2 - in3; \ out2 = in4 - in5; \ } while (0) #define SUB4(in0, in1, in2, in3, in4, in5, in6, in7, \ out0, out1, out2, out3) do { \ out0 = in0 - in1; \ out1 = in2 - in3; \ out2 = in4 - in5; \ out3 = in6 - in7; \ } while (0) /* Description : Addition - Subtraction of input vectors * Arguments : Inputs - in0, in1 * Outputs - out0, out1 * Details : Each element in 'in1' is added to 'in0' and result is * written to 'out0'. * Each element in 'in1' is subtracted from 'in0' and result is * written to 'out1'. */ #define ADDSUB2(in0, in1, out0, out1) do { \ out0 = in0 + in1; \ out1 = in0 - in1; \ } while (0) /* Description : Multiplication of pairs of vectors * Arguments : Inputs - in0, in1, in2, in3 * Outputs - out0, out1 * Details : Each element from 'in0' is multiplied with elements from 'in1' * and the result is written to 'out0' */ #define MUL2(in0, in1, in2, in3, out0, out1) do { \ out0 = in0 * in1; \ out1 = in2 * in3; \ } while (0) #define MUL4(in0, in1, in2, in3, in4, in5, in6, in7, \ out0, out1, out2, out3) do { \ MUL2(in0, in1, in2, in3, out0, out1); \ MUL2(in4, in5, in6, in7, out2, out3); \ } while (0) /* Description : Sign extend halfword elements from right half of the vector * Arguments : Input - in (halfword vector) * Output - out (sign extended word vector) * Return Type - signed word * Details : Sign bit of halfword elements from input vector 'in' is * extracted and interleaved with same vector 'in0' to generate * 4 word elements keeping sign intact */ #define UNPCK_R_SH_SW(in, out) do { \ const v8i16 sign_m = __msa_clti_s_h((v8i16)in, 0); \ out = (v4i32)__msa_ilvr_h(sign_m, (v8i16)in); \ } while (0) /* Description : Sign extend halfword elements from input vector and return * the result in pair of vectors * Arguments : Input - in (halfword vector) * Outputs - out0, out1 (sign extended word vectors) * Return Type - signed word * Details : Sign bit of halfword elements from input vector 'in' is * extracted and interleaved right with same vector 'in0' to * generate 4 signed word elements in 'out0' * Then interleaved left with same vector 'in0' to * generate 4 signed word elements in 'out1' */ #define UNPCK_SH_SW(in, out0, out1) do { \ const v8i16 tmp_m = __msa_clti_s_h((v8i16)in, 0); \ ILVRL_H2_SW(tmp_m, in, out0, out1); \ } while (0) /* Description : Butterfly of 4 input vectors * Arguments : Inputs - in0, in1, in2, in3 * Outputs - out0, out1, out2, out3 * Details : Butterfly operation */ #define BUTTERFLY_4(in0, in1, in2, in3, out0, out1, out2, out3) do { \ out0 = in0 + in3; \ out1 = in1 + in2; \ out2 = in1 - in2; \ out3 = in0 - in3; \ } while (0) /* Description : Transpose 16x4 block into 4x16 with byte elements in vectors * Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7, * in8, in9, in10, in11, in12, in13, in14, in15 * Outputs - out0, out1, out2, out3 * Return Type - unsigned byte */ #define TRANSPOSE16x4_UB_UB(in0, in1, in2, in3, in4, in5, in6, in7, \ in8, in9, in10, in11, in12, in13, in14, in15, \ out0, out1, out2, out3) do { \ v2i64 tmp0_m, tmp1_m, tmp2_m, tmp3_m, tmp4_m, tmp5_m; \ ILVEV_W2_SD(in0, in4, in8, in12, tmp2_m, tmp3_m); \ ILVEV_W2_SD(in1, in5, in9, in13, tmp0_m, tmp1_m); \ ILVEV_D2_UB(tmp2_m, tmp3_m, tmp0_m, tmp1_m, out1, out3); \ ILVEV_W2_SD(in2, in6, in10, in14, tmp4_m, tmp5_m); \ ILVEV_W2_SD(in3, in7, in11, in15, tmp0_m, tmp1_m); \ ILVEV_D2_SD(tmp4_m, tmp5_m, tmp0_m, tmp1_m, tmp2_m, tmp3_m); \ ILVEV_B2_SD(out1, out3, tmp2_m, tmp3_m, tmp0_m, tmp1_m); \ ILVEVOD_H2_UB(tmp0_m, tmp1_m, tmp0_m, tmp1_m, out0, out2); \ ILVOD_B2_SD(out1, out3, tmp2_m, tmp3_m, tmp0_m, tmp1_m); \ ILVEVOD_H2_UB(tmp0_m, tmp1_m, tmp0_m, tmp1_m, out1, out3); \ } while (0) /* Description : Transpose 16x8 block into 8x16 with byte elements in vectors * Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7, * in8, in9, in10, in11, in12, in13, in14, in15 * Outputs - out0, out1, out2, out3, out4, out5, out6, out7 * Return Type - unsigned byte */ #define TRANSPOSE16x8_UB_UB(in0, in1, in2, in3, in4, in5, in6, in7, \ in8, in9, in10, in11, in12, in13, in14, in15, \ out0, out1, out2, out3, out4, out5, \ out6, out7) do { \ v8i16 tmp0_m, tmp1_m, tmp4_m, tmp5_m, tmp6_m, tmp7_m; \ v4i32 tmp2_m, tmp3_m; \ ILVEV_D2_UB(in0, in8, in1, in9, out7, out6); \ ILVEV_D2_UB(in2, in10, in3, in11, out5, out4); \ ILVEV_D2_UB(in4, in12, in5, in13, out3, out2); \ ILVEV_D2_UB(in6, in14, in7, in15, out1, out0); \ ILVEV_B2_SH(out7, out6, out5, out4, tmp0_m, tmp1_m); \ ILVOD_B2_SH(out7, out6, out5, out4, tmp4_m, tmp5_m); \ ILVEV_B2_UB(out3, out2, out1, out0, out5, out7); \ ILVOD_B2_SH(out3, out2, out1, out0, tmp6_m, tmp7_m); \ ILVEV_H2_SW(tmp0_m, tmp1_m, out5, out7, tmp2_m, tmp3_m); \ ILVEVOD_W2_UB(tmp2_m, tmp3_m, tmp2_m, tmp3_m, out0, out4); \ ILVOD_H2_SW(tmp0_m, tmp1_m, out5, out7, tmp2_m, tmp3_m); \ ILVEVOD_W2_UB(tmp2_m, tmp3_m, tmp2_m, tmp3_m, out2, out6); \ ILVEV_H2_SW(tmp4_m, tmp5_m, tmp6_m, tmp7_m, tmp2_m, tmp3_m); \ ILVEVOD_W2_UB(tmp2_m, tmp3_m, tmp2_m, tmp3_m, out1, out5); \ ILVOD_H2_SW(tmp4_m, tmp5_m, tmp6_m, tmp7_m, tmp2_m, tmp3_m); \ ILVEVOD_W2_UB(tmp2_m, tmp3_m, tmp2_m, tmp3_m, out3, out7); \ } while (0) /* Description : Transpose 4x4 block with word elements in vectors * Arguments : Inputs - in0, in1, in2, in3 * Outputs - out0, out1, out2, out3 * Return Type - as per RTYPE */ #define TRANSPOSE4x4_W(RTYPE, in0, in1, in2, in3, \ out0, out1, out2, out3) do { \ v4i32 s0_m, s1_m, s2_m, s3_m; \ ILVRL_W2_SW(in1, in0, s0_m, s1_m); \ ILVRL_W2_SW(in3, in2, s2_m, s3_m); \ out0 = (RTYPE)__msa_ilvr_d((v2i64)s2_m, (v2i64)s0_m); \ out1 = (RTYPE)__msa_ilvl_d((v2i64)s2_m, (v2i64)s0_m); \ out2 = (RTYPE)__msa_ilvr_d((v2i64)s3_m, (v2i64)s1_m); \ out3 = (RTYPE)__msa_ilvl_d((v2i64)s3_m, (v2i64)s1_m); \ } while (0) #define TRANSPOSE4x4_SW_SW(...) TRANSPOSE4x4_W(v4i32, __VA_ARGS__) /* Description : Add block 4x4 * Arguments : Inputs - in0, in1, in2, in3, pdst, stride * Details : Least significant 4 bytes from each input vector are added to * the destination bytes, clipped between 0-255 and stored. */ #define ADDBLK_ST4x4_UB(in0, in1, in2, in3, pdst, stride) do { \ uint32_t src0_m, src1_m, src2_m, src3_m; \ v8i16 inp0_m, inp1_m, res0_m, res1_m; \ v16i8 dst0_m = { 0 }; \ v16i8 dst1_m = { 0 }; \ const v16i8 zero_m = { 0 }; \ ILVR_D2_SH(in1, in0, in3, in2, inp0_m, inp1_m); \ LW4(pdst, stride, src0_m, src1_m, src2_m, src3_m); \ INSERT_W2_SB(src0_m, src1_m, dst0_m); \ INSERT_W2_SB(src2_m, src3_m, dst1_m); \ ILVR_B2_SH(zero_m, dst0_m, zero_m, dst1_m, res0_m, res1_m); \ ADD2(res0_m, inp0_m, res1_m, inp1_m, res0_m, res1_m); \ CLIP_SH2_0_255(res0_m, res1_m); \ PCKEV_B2_SB(res0_m, res0_m, res1_m, res1_m, dst0_m, dst1_m); \ ST4x4_UB(dst0_m, dst1_m, 0, 1, 0, 1, pdst, stride); \ } while (0) /* Description : Pack even byte elements, extract 0 & 2 index words from pair * of results and store 4 words in destination memory as per * stride * Arguments : Inputs - in0, in1, in2, in3, pdst, stride */ #define PCKEV_ST4x4_UB(in0, in1, in2, in3, pdst, stride) do { \ v16i8 tmp0_m, tmp1_m; \ PCKEV_B2_SB(in1, in0, in3, in2, tmp0_m, tmp1_m); \ ST4x4_UB(tmp0_m, tmp1_m, 0, 2, 0, 2, pdst, stride); \ } while (0) /* Description : average with rounding (in0 + in1 + 1) / 2. * Arguments : Inputs - in0, in1, in2, in3, * Outputs - out0, out1 * Return Type - as per RTYPE * Details : Each unsigned byte element from 'in0' vector is added with * each unsigned byte element from 'in1' vector. Then the average * with rounding is calculated and written to 'out0' */ #define AVER_UB2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ out0 = (RTYPE)__msa_aver_u_b((v16u8)in0, (v16u8)in1); \ out1 = (RTYPE)__msa_aver_u_b((v16u8)in2, (v16u8)in3); \ } while (0) #define AVER_UB2_UB(...) AVER_UB2(v16u8, __VA_ARGS__) #endif // WEBP_DSP_MSA_MACRO_H_