/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" namespace opencv_test { namespace { static string getDataDir() { return TS::ptr()->get_data_path(); } static string getRubberWhaleFrame1() { return getDataDir() + "optflow/RubberWhale1.png"; } static string getRubberWhaleFrame2() { return getDataDir() + "optflow/RubberWhale2.png"; } static string getRubberWhaleGroundTruth() { return getDataDir() + "optflow/RubberWhale.flo"; } static bool isFlowCorrect(float u) { return !cvIsNaN(u) && (fabs(u) < 1e9); } static bool isFlowCorrect(double u) { return !cvIsNaN(u) && (fabs(u) < 1e9); } static float calcRMSE(Mat flow1, Mat flow2) { float sum = 0; int counter = 0; const int rows = flow1.rows; const int cols = flow1.cols; for (int y = 0; y < rows; ++y) { for (int x = 0; x < cols; ++x) { Vec2f flow1_at_point = flow1.at(y, x); Vec2f flow2_at_point = flow2.at(y, x); float u1 = flow1_at_point[0]; float v1 = flow1_at_point[1]; float u2 = flow2_at_point[0]; float v2 = flow2_at_point[1]; if (isFlowCorrect(u1) && isFlowCorrect(u2) && isFlowCorrect(v1) && isFlowCorrect(v2)) { sum += (u1 - u2) * (u1 - u2) + (v1 - v2) * (v1 - v2); counter++; } } } return (float)sqrt(sum / (1e-9 + counter)); } static float calcRMSE(vector prevPts, vector currPts, Mat flow) { vector ee; for (unsigned int n = 0; n < prevPts.size(); n++) { Point2f gtFlow = flow.at(prevPts[n]); if (isFlowCorrect(gtFlow.x) && isFlowCorrect(gtFlow.y)) { Point2f diffFlow = (currPts[n] - prevPts[n]) - gtFlow; ee.push_back(sqrt(diffFlow.x * diffFlow.x + diffFlow.y * diffFlow.y)); } } return static_cast(mean(ee).val[0]); } static float calcAvgEPE(vector< pair > corr, Mat flow) { double sum = 0; int counter = 0; for (size_t i = 0; i < corr.size(); ++i) { Vec2f flow1_at_point = Point2f(corr[i].second - corr[i].first); Vec2f flow2_at_point = flow.at(corr[i].first.y, corr[i].first.x); double u1 = (double)flow1_at_point[0]; double v1 = (double)flow1_at_point[1]; double u2 = (double)flow2_at_point[0]; double v2 = (double)flow2_at_point[1]; if (isFlowCorrect(u1) && isFlowCorrect(u2) && isFlowCorrect(v1) && isFlowCorrect(v2)) { sum += sqrt((u1 - u2) * (u1 - u2) + (v1 - v2) * (v1 - v2)); counter++; } } return (float)(sum / counter); } bool readRubberWhale(Mat &dst_frame_1, Mat &dst_frame_2, Mat &dst_GT) { string frame1_path = getRubberWhaleFrame1(); string frame2_path = getRubberWhaleFrame2(); string gt_flow_path = getRubberWhaleGroundTruth(); // removing space may be an issue on windows machines frame1_path.erase(std::remove_if(frame1_path.begin(), frame1_path.end(), isspace), frame1_path.end()); frame2_path.erase(std::remove_if(frame2_path.begin(), frame2_path.end(), isspace), frame2_path.end()); gt_flow_path.erase(std::remove_if(gt_flow_path.begin(), gt_flow_path.end(), isspace), gt_flow_path.end()); dst_frame_1 = imread(frame1_path); dst_frame_2 = imread(frame2_path); dst_GT = readOpticalFlow(gt_flow_path); if (dst_frame_1.empty() || dst_frame_2.empty() || dst_GT.empty()) return false; else return true; } TEST(DenseOpticalFlow_SimpleFlow, ReferenceAccuracy) { Mat frame1, frame2, GT; ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); float target_RMSE = 0.37f; Mat flow; Ptr algo; algo = createOptFlow_SimpleFlow(); algo->calc(frame1, frame2, flow); ASSERT_EQ(GT.rows, flow.rows); ASSERT_EQ(GT.cols, flow.cols); EXPECT_LE(calcRMSE(GT, flow), target_RMSE); } TEST(DenseOpticalFlow_DeepFlow, ReferenceAccuracy) { Mat frame1, frame2, GT; ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); float target_RMSE = 0.35f; cvtColor(frame1, frame1, COLOR_BGR2GRAY); cvtColor(frame2, frame2, COLOR_BGR2GRAY); Mat flow; Ptr algo; algo = createOptFlow_DeepFlow(); algo->calc(frame1, frame2, flow); ASSERT_EQ(GT.rows, flow.rows); ASSERT_EQ(GT.cols, flow.cols); EXPECT_LE(calcRMSE(GT, flow), target_RMSE); } TEST(SparseOpticalFlow, ReferenceAccuracy) { // with the following test each invoker class should be tested once Mat frame1, frame2, GT; ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); vector prevPts, currPts; for (int r = 0; r < frame1.rows; r+=10) { for (int c = 0; c < frame1.cols; c+=10) { prevPts.push_back(Point2f(static_cast(c), static_cast(r))); } } vector status(prevPts.size()); vector err(prevPts.size()); Ptr algo = SparseRLOFOpticalFlow::create(); algo->setForwardBackward(0.0f); Ptr param = Ptr(new RLOFOpticalFlowParameter); param->supportRegionType = SR_CROSS; param->useIlluminationModel = true; param->solverType = ST_BILINEAR; algo->setRLOFOpticalFlowParameter(param); algo->calc(frame1, frame2, prevPts, currPts, status, err); EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.3f); param->solverType = ST_STANDART; algo->setRLOFOpticalFlowParameter(param); algo->calc(frame1, frame2, prevPts, currPts, status, err); EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.34f); param->useIlluminationModel = false; param->solverType = ST_BILINEAR; algo->setRLOFOpticalFlowParameter(param); algo->calc(frame1, frame2, prevPts, currPts, status, err); EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.27f); param->solverType = ST_STANDART; algo->setRLOFOpticalFlowParameter(param); algo->calc(frame1, frame2, prevPts, currPts, status, err); EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.27f); param->normSigma0 = numeric_limits::max(); param->normSigma1 = numeric_limits::max(); param->useIlluminationModel = true; param->solverType = ST_BILINEAR; algo->setRLOFOpticalFlowParameter(param); algo->calc(frame1, frame2, prevPts, currPts, status, err); EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.28f); param->solverType = ST_STANDART; algo->setRLOFOpticalFlowParameter(param); algo->calc(frame1, frame2, prevPts, currPts, status, err); EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.28f); param->useIlluminationModel = false; param->solverType = ST_BILINEAR; algo->setRLOFOpticalFlowParameter(param); algo->calc(frame1, frame2, prevPts, currPts, status, err); EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.80f); param->solverType = ST_STANDART; algo->setRLOFOpticalFlowParameter(param); algo->calc(frame1, frame2, prevPts, currPts, status, err); EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.28f); } TEST(DenseOpticalFlow_RLOF, ReferenceAccuracy) { Mat frame1, frame2, GT; ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); Mat flow; Ptr algo = DenseRLOFOpticalFlow::create(); Ptr param = Ptr(new RLOFOpticalFlowParameter); param->supportRegionType = SR_CROSS; param->solverType = ST_BILINEAR; algo->setRLOFOpticalFlowParameter(param); algo->setForwardBackward(1.0f); algo->setGridStep(cv::Size(4, 4)); algo->setInterpolation(INTERP_EPIC); algo->calc(frame1, frame2, flow); ASSERT_EQ(GT.rows, flow.rows); ASSERT_EQ(GT.cols, flow.cols); EXPECT_LE(calcRMSE(GT, flow), 0.46f); algo->setInterpolation(INTERP_GEO); algo->calc(frame1, frame2, flow); ASSERT_EQ(GT.rows, flow.rows); ASSERT_EQ(GT.cols, flow.cols); EXPECT_LE(calcRMSE(GT, flow), 0.55f); } TEST(DenseOpticalFlow_SparseToDenseFlow, ReferenceAccuracy) { Mat frame1, frame2, GT; ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); float target_RMSE = 0.52f; Mat flow; Ptr algo; algo = createOptFlow_SparseToDense(); algo->calc(frame1, frame2, flow); ASSERT_EQ(GT.rows, flow.rows); ASSERT_EQ(GT.cols, flow.cols); EXPECT_LE(calcRMSE(GT, flow), target_RMSE); } TEST(DenseOpticalFlow_PCAFlow, ReferenceAccuracy) { Mat frame1, frame2, GT; ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); const float target_RMSE = 0.55f; Mat flow; Ptr algo = createOptFlow_PCAFlow(); algo->calc(frame1, frame2, flow); ASSERT_EQ(GT.rows, flow.rows); ASSERT_EQ(GT.cols, flow.cols); EXPECT_LE(calcRMSE(GT, flow), target_RMSE); } TEST(DenseOpticalFlow_GlobalPatchColliderDCT, ReferenceAccuracy) { Mat frame1, frame2, GT; ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); const Size sz = frame1.size() / 2; frame1 = frame1(Rect(0, 0, sz.width, sz.height)); frame2 = frame2(Rect(0, 0, sz.width, sz.height)); GT = GT(Rect(0, 0, sz.width, sz.height)); vector img1, img2, gt; vector< pair > corr; img1.push_back(frame1); img2.push_back(frame2); gt.push_back(GT); Ptr< GPCForest<5> > forest = GPCForest<5>::create(); forest->train(img1, img2, gt, GPCTrainingParams(8, 3, GPC_DESCRIPTOR_DCT, false)); forest->findCorrespondences(frame1, frame2, corr); ASSERT_LE(7500U, corr.size()); ASSERT_LE(calcAvgEPE(corr, GT), 0.5f); } TEST(DenseOpticalFlow_GlobalPatchColliderWHT, ReferenceAccuracy) { Mat frame1, frame2, GT; ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); const Size sz = frame1.size() / 2; frame1 = frame1(Rect(0, 0, sz.width, sz.height)); frame2 = frame2(Rect(0, 0, sz.width, sz.height)); GT = GT(Rect(0, 0, sz.width, sz.height)); vector img1, img2, gt; vector< pair > corr; img1.push_back(frame1); img2.push_back(frame2); gt.push_back(GT); Ptr< GPCForest<5> > forest = GPCForest<5>::create(); forest->train(img1, img2, gt, GPCTrainingParams(8, 3, GPC_DESCRIPTOR_WHT, false)); forest->findCorrespondences(frame1, frame2, corr); ASSERT_LE(7000U, corr.size()); ASSERT_LE(calcAvgEPE(corr, GT), 0.5f); } }} // namespace