/* By downloading, copying, installing or using the software you agree to this license. If you do not agree to this license, do not download, install, copy or use the software. License Agreement For Open Source Computer Vision Library (3-clause BSD License) Copyright (C) 2013, OpenCV Foundation, all rights reserved. Third party copyrights are property of their respective owners. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the names of the copyright holders nor the names of the contributors may be used to endorse or promote products derived from this software without specific prior written permission. This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall copyright holders or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage. */ #include "test_precomp.hpp" namespace opencv_test { namespace { /** * @brief Draw 2D synthetic markers and detect them */ class CV_ArucoDetectionSimple : public cvtest::BaseTest { public: CV_ArucoDetectionSimple(); protected: void run(int); }; CV_ArucoDetectionSimple::CV_ArucoDetectionSimple() {} void CV_ArucoDetectionSimple::run(int) { Ptr dictionary = aruco::getPredefinedDictionary(aruco::DICT_6X6_250); // 20 images for(int i = 0; i < 20; i++) { const int markerSidePixels = 100; int imageSize = markerSidePixels * 2 + 3 * (markerSidePixels / 2); // draw synthetic image and store marker corners and ids vector< vector< Point2f > > groundTruthCorners; vector< int > groundTruthIds; Mat img = Mat(imageSize, imageSize, CV_8UC1, Scalar::all(255)); for(int y = 0; y < 2; y++) { for(int x = 0; x < 2; x++) { Mat marker; int id = i * 4 + y * 2 + x; aruco::drawMarker(dictionary, id, markerSidePixels, marker); Point2f firstCorner = Point2f(markerSidePixels / 2.f + x * (1.5f * markerSidePixels), markerSidePixels / 2.f + y * (1.5f * markerSidePixels)); Mat aux = img.colRange((int)firstCorner.x, (int)firstCorner.x + markerSidePixels) .rowRange((int)firstCorner.y, (int)firstCorner.y + markerSidePixels); marker.copyTo(aux); groundTruthIds.push_back(id); groundTruthCorners.push_back(vector< Point2f >()); groundTruthCorners.back().push_back(firstCorner); groundTruthCorners.back().push_back(firstCorner + Point2f(markerSidePixels - 1, 0)); groundTruthCorners.back().push_back( firstCorner + Point2f(markerSidePixels - 1, markerSidePixels - 1)); groundTruthCorners.back().push_back(firstCorner + Point2f(0, markerSidePixels - 1)); } } if(i % 2 == 1) img.convertTo(img, CV_8UC3); // detect markers vector< vector< Point2f > > corners; vector< int > ids; Ptr params = aruco::DetectorParameters::create(); aruco::detectMarkers(img, dictionary, corners, ids, params); // check detection results for(unsigned int m = 0; m < groundTruthIds.size(); m++) { int idx = -1; for(unsigned int k = 0; k < ids.size(); k++) { if(groundTruthIds[m] == ids[k]) { idx = (int)k; break; } } if(idx == -1) { ts->printf(cvtest::TS::LOG, "Marker not detected"); ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); return; } for(int c = 0; c < 4; c++) { double dist = cv::norm(groundTruthCorners[m][c] - corners[idx][c]); // TODO cvtest if(dist > 0.001) { ts->printf(cvtest::TS::LOG, "Incorrect marker corners position"); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); return; } } } } } static double deg2rad(double deg) { return deg * CV_PI / 180.; } /** * @brief Get rvec and tvec from yaw, pitch and distance */ static void getSyntheticRT(double yaw, double pitch, double distance, Mat &rvec, Mat &tvec) { rvec = Mat(3, 1, CV_64FC1); tvec = Mat(3, 1, CV_64FC1); // Rvec // first put the Z axis aiming to -X (like the camera axis system) Mat rotZ(3, 1, CV_64FC1); rotZ.ptr< double >(0)[0] = 0; rotZ.ptr< double >(0)[1] = 0; rotZ.ptr< double >(0)[2] = -0.5 * CV_PI; Mat rotX(3, 1, CV_64FC1); rotX.ptr< double >(0)[0] = 0.5 * CV_PI; rotX.ptr< double >(0)[1] = 0; rotX.ptr< double >(0)[2] = 0; Mat camRvec, camTvec; composeRT(rotZ, Mat(3, 1, CV_64FC1, Scalar::all(0)), rotX, Mat(3, 1, CV_64FC1, Scalar::all(0)), camRvec, camTvec); // now pitch and yaw angles Mat rotPitch(3, 1, CV_64FC1); rotPitch.ptr< double >(0)[0] = 0; rotPitch.ptr< double >(0)[1] = pitch; rotPitch.ptr< double >(0)[2] = 0; Mat rotYaw(3, 1, CV_64FC1); rotYaw.ptr< double >(0)[0] = yaw; rotYaw.ptr< double >(0)[1] = 0; rotYaw.ptr< double >(0)[2] = 0; composeRT(rotPitch, Mat(3, 1, CV_64FC1, Scalar::all(0)), rotYaw, Mat(3, 1, CV_64FC1, Scalar::all(0)), rvec, tvec); // compose both rotations composeRT(camRvec, Mat(3, 1, CV_64FC1, Scalar::all(0)), rvec, Mat(3, 1, CV_64FC1, Scalar::all(0)), rvec, tvec); // Tvec, just move in z (camera) direction the specific distance tvec.ptr< double >(0)[0] = 0.; tvec.ptr< double >(0)[1] = 0.; tvec.ptr< double >(0)[2] = distance; } /** * @brief Create a synthetic image of a marker with perspective */ static Mat projectMarker(Ptr &dictionary, int id, Mat cameraMatrix, double yaw, double pitch, double distance, Size imageSize, int markerBorder, vector< Point2f > &corners, int encloseMarker=0) { // canonical image Mat marker, markerImg; const int markerSizePixels = 100; aruco::drawMarker(dictionary, id, markerSizePixels, marker, markerBorder); marker.copyTo(markerImg); if(encloseMarker){ //to enclose the marker int enclose = int(marker.rows/4); markerImg = Mat::zeros(marker.rows+(2*enclose), marker.cols+(enclose*2), CV_8UC1); Mat field= markerImg.rowRange(int(enclose), int(markerImg.rows-enclose)) .colRange(int(0), int(markerImg.cols)); field.setTo(255); field= markerImg.rowRange(int(0), int(markerImg.rows)) .colRange(int(enclose), int(markerImg.cols-enclose)); field.setTo(255); field = markerImg(Rect(enclose,enclose,marker.rows,marker.cols)); marker.copyTo(field); } // get rvec and tvec for the perspective Mat rvec, tvec; getSyntheticRT(yaw, pitch, distance, rvec, tvec); const float markerLength = 0.05f; vector< Point3f > markerObjPoints; markerObjPoints.push_back(Point3f(-markerLength / 2.f, +markerLength / 2.f, 0)); markerObjPoints.push_back(markerObjPoints[0] + Point3f(markerLength, 0, 0)); markerObjPoints.push_back(markerObjPoints[0] + Point3f(markerLength, -markerLength, 0)); markerObjPoints.push_back(markerObjPoints[0] + Point3f(0, -markerLength, 0)); // project markers and draw them Mat distCoeffs(5, 1, CV_64FC1, Scalar::all(0)); projectPoints(markerObjPoints, rvec, tvec, cameraMatrix, distCoeffs, corners); vector< Point2f > originalCorners; originalCorners.push_back(Point2f(0+float(encloseMarker*markerSizePixels/4), 0+float(encloseMarker*markerSizePixels/4))); originalCorners.push_back(originalCorners[0]+Point2f((float)markerSizePixels, 0)); originalCorners.push_back(originalCorners[0]+Point2f((float)markerSizePixels, (float)markerSizePixels)); originalCorners.push_back(originalCorners[0]+Point2f(0, (float)markerSizePixels)); Mat transformation = getPerspectiveTransform(originalCorners, corners); Mat img(imageSize, CV_8UC1, Scalar::all(255)); Mat aux; const char borderValue = 127; warpPerspective(markerImg, aux, transformation, imageSize, INTER_NEAREST, BORDER_CONSTANT, Scalar::all(borderValue)); // copy only not-border pixels for(int y = 0; y < aux.rows; y++) { for(int x = 0; x < aux.cols; x++) { if(aux.at< unsigned char >(y, x) == borderValue) continue; img.at< unsigned char >(y, x) = aux.at< unsigned char >(y, x); } } return img; } /** * @brief Draws markers in perspective and detect them */ class CV_ArucoDetectionPerspective : public cvtest::BaseTest { public: CV_ArucoDetectionPerspective(); enum checkWithParameter{ USE_APRILTAG=1, /// Detect marker candidates :: using AprilTag DETECT_INVERTED_MARKER, /// Check if there is a white marker }; protected: void run(int); }; CV_ArucoDetectionPerspective::CV_ArucoDetectionPerspective() {} void CV_ArucoDetectionPerspective::run(int tryWith) { int iter = 0; int szEnclosed = 0; Mat cameraMatrix = Mat::eye(3, 3, CV_64FC1); Size imgSize(500, 500); cameraMatrix.at< double >(0, 0) = cameraMatrix.at< double >(1, 1) = 650; cameraMatrix.at< double >(0, 2) = imgSize.width / 2; cameraMatrix.at< double >(1, 2) = imgSize.height / 2; Ptr dictionary = aruco::getPredefinedDictionary(aruco::DICT_6X6_250); // detect from different positions for(double distance = 0.1; distance < 0.7; distance += 0.2) { for(int pitch = 0; pitch < 360; pitch += (distance == 0.1? 60:180)) { for(int yaw = 70; yaw <= 120; yaw += 40){ int currentId = iter % 250; int markerBorder = iter % 2 + 1; iter++; vector< Point2f > groundTruthCorners; Ptr params = aruco::DetectorParameters::create(); params->minDistanceToBorder = 1; params->markerBorderBits = markerBorder; /// create synthetic image Mat img= projectMarker(dictionary, currentId, cameraMatrix, deg2rad(yaw), deg2rad(pitch), distance, imgSize, markerBorder, groundTruthCorners, szEnclosed); // marker :: Inverted if(CV_ArucoDetectionPerspective::DETECT_INVERTED_MARKER == tryWith){ img = ~img; params->detectInvertedMarker = true; } if(CV_ArucoDetectionPerspective::USE_APRILTAG == tryWith){ params->cornerRefinementMethod = cv::aruco::CORNER_REFINE_APRILTAG; } // detect markers vector< vector< Point2f > > corners; vector< int > ids; aruco::detectMarkers(img, dictionary, corners, ids, params); // check results if(ids.size() != 1 || (ids.size() == 1 && ids[0] != currentId)) { if(ids.size() != 1) ts->printf(cvtest::TS::LOG, "Incorrect number of detected markers"); else ts->printf(cvtest::TS::LOG, "Incorrect marker id"); ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); return; } for(int c = 0; c < 4; c++) { double dist = cv::norm(groundTruthCorners[c] - corners[0][c]); // TODO cvtest if(dist > 5) { ts->printf(cvtest::TS::LOG, "Incorrect marker corners position"); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); return; } } } } // change the state :: to detect an enclosed inverted marker if( CV_ArucoDetectionPerspective::DETECT_INVERTED_MARKER == tryWith && distance == 0.1 ){ distance -= 0.1; szEnclosed++; } } } /** * @brief Check max and min size in marker detection parameters */ class CV_ArucoDetectionMarkerSize : public cvtest::BaseTest { public: CV_ArucoDetectionMarkerSize(); protected: void run(int); }; CV_ArucoDetectionMarkerSize::CV_ArucoDetectionMarkerSize() {} void CV_ArucoDetectionMarkerSize::run(int) { Ptr dictionary = aruco::getPredefinedDictionary(aruco::DICT_6X6_250); int markerSide = 20; int imageSize = 200; // 10 cases for(int i = 0; i < 10; i++) { Mat marker; int id = 10 + i * 20; // create synthetic image Mat img = Mat(imageSize, imageSize, CV_8UC1, Scalar::all(255)); aruco::drawMarker(dictionary, id, markerSide, marker); Mat aux = img.colRange(30, 30 + markerSide).rowRange(50, 50 + markerSide); marker.copyTo(aux); vector< vector< Point2f > > corners; vector< int > ids; Ptr params = aruco::DetectorParameters::create(); // set a invalid minMarkerPerimeterRate params->minMarkerPerimeterRate = min(4., (4. * markerSide) / float(imageSize) + 0.1); aruco::detectMarkers(img, dictionary, corners, ids, params); if(corners.size() != 0) { ts->printf(cvtest::TS::LOG, "Error in DetectorParameters::minMarkerPerimeterRate"); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); return; } // set an valid minMarkerPerimeterRate params->minMarkerPerimeterRate = max(0., (4. * markerSide) / float(imageSize) - 0.1); aruco::detectMarkers(img, dictionary, corners, ids, params); if(corners.size() != 1 || (corners.size() == 1 && ids[0] != id)) { ts->printf(cvtest::TS::LOG, "Error in DetectorParameters::minMarkerPerimeterRate"); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); return; } // set a invalid maxMarkerPerimeterRate params->maxMarkerPerimeterRate = min(4., (4. * markerSide) / float(imageSize) - 0.1); aruco::detectMarkers(img, dictionary, corners, ids, params); if(corners.size() != 0) { ts->printf(cvtest::TS::LOG, "Error in DetectorParameters::maxMarkerPerimeterRate"); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); return; } // set an valid maxMarkerPerimeterRate params->maxMarkerPerimeterRate = max(0., (4. * markerSide) / float(imageSize) + 0.1); aruco::detectMarkers(img, dictionary, corners, ids, params); if(corners.size() != 1 || (corners.size() == 1 && ids[0] != id)) { ts->printf(cvtest::TS::LOG, "Error in DetectorParameters::maxMarkerPerimeterRate"); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); return; } } } /** * @brief Check error correction in marker bits */ class CV_ArucoBitCorrection : public cvtest::BaseTest { public: CV_ArucoBitCorrection(); protected: void run(int); }; CV_ArucoBitCorrection::CV_ArucoBitCorrection() {} void CV_ArucoBitCorrection::run(int) { Ptr _dictionary = aruco::getPredefinedDictionary(aruco::DICT_6X6_250); aruco::Dictionary &dictionary = *_dictionary; aruco::Dictionary dictionary2 = *_dictionary; int markerSide = 50; int imageSize = 150; Ptr params = aruco::DetectorParameters::create(); // 10 markers for(int l = 0; l < 10; l++) { Mat marker; int id = 10 + l * 20; Mat currentCodeBytes = dictionary.bytesList.rowRange(id, id + 1); // 5 valid cases for(int i = 0; i < 5; i++) { // how many bit errors (the error is low enough so it can be corrected) params->errorCorrectionRate = 0.2 + i * 0.1; int errors = (int)std::floor(dictionary.maxCorrectionBits * params->errorCorrectionRate - 1.); // create erroneous marker in currentCodeBits Mat currentCodeBits = aruco::Dictionary::getBitsFromByteList(currentCodeBytes, dictionary.markerSize); for(int e = 0; e < errors; e++) { currentCodeBits.ptr< unsigned char >()[2 * e] = !currentCodeBits.ptr< unsigned char >()[2 * e]; } // add erroneous marker to dictionary2 in order to create the erroneous marker image Mat currentCodeBytesError = aruco::Dictionary::getByteListFromBits(currentCodeBits); currentCodeBytesError.copyTo(dictionary2.bytesList.rowRange(id, id + 1)); Mat img = Mat(imageSize, imageSize, CV_8UC1, Scalar::all(255)); dictionary2.drawMarker(id, markerSide, marker); Mat aux = img.colRange(30, 30 + markerSide).rowRange(50, 50 + markerSide); marker.copyTo(aux); // try to detect using original dictionary vector< vector< Point2f > > corners; vector< int > ids; aruco::detectMarkers(img, _dictionary, corners, ids, params); if(corners.size() != 1 || (corners.size() == 1 && ids[0] != id)) { ts->printf(cvtest::TS::LOG, "Error in bit correction"); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); return; } } // 5 invalid cases for(int i = 0; i < 5; i++) { // how many bit errors (the error is too high to be corrected) params->errorCorrectionRate = 0.2 + i * 0.1; int errors = (int)std::floor(dictionary.maxCorrectionBits * params->errorCorrectionRate + 1.); // create erroneous marker in currentCodeBits Mat currentCodeBits = aruco::Dictionary::getBitsFromByteList(currentCodeBytes, dictionary.markerSize); for(int e = 0; e < errors; e++) { currentCodeBits.ptr< unsigned char >()[2 * e] = !currentCodeBits.ptr< unsigned char >()[2 * e]; } // dictionary3 is only composed by the modified marker (in its original form) Ptr _dictionary3 = makePtr( dictionary2.bytesList.rowRange(id, id + 1).clone(), dictionary.markerSize, dictionary.maxCorrectionBits); // add erroneous marker to dictionary2 in order to create the erroneous marker image Mat currentCodeBytesError = aruco::Dictionary::getByteListFromBits(currentCodeBits); currentCodeBytesError.copyTo(dictionary2.bytesList.rowRange(id, id + 1)); Mat img = Mat(imageSize, imageSize, CV_8UC1, Scalar::all(255)); dictionary2.drawMarker(id, markerSide, marker); Mat aux = img.colRange(30, 30 + markerSide).rowRange(50, 50 + markerSide); marker.copyTo(aux); // try to detect using dictionary3, it should fail vector< vector< Point2f > > corners; vector< int > ids; aruco::detectMarkers(img, _dictionary3, corners, ids, params); if(corners.size() != 0) { ts->printf(cvtest::TS::LOG, "Error in DetectorParameters::errorCorrectionRate"); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); return; } } } } typedef CV_ArucoDetectionPerspective CV_AprilTagDetectionPerspective; typedef CV_ArucoDetectionPerspective CV_InvertedArucoDetectionPerspective; TEST(CV_InvertedArucoDetectionPerspective, algorithmic) { CV_InvertedArucoDetectionPerspective test; test.safe_run(CV_ArucoDetectionPerspective::DETECT_INVERTED_MARKER); } TEST(CV_AprilTagDetectionPerspective, algorithmic) { CV_AprilTagDetectionPerspective test; test.safe_run(CV_ArucoDetectionPerspective::USE_APRILTAG); } TEST(CV_ArucoDetectionSimple, algorithmic) { CV_ArucoDetectionSimple test; test.safe_run(); } TEST(CV_ArucoDetectionPerspective, algorithmic) { CV_ArucoDetectionPerspective test; test.safe_run(); } TEST(CV_ArucoDetectionMarkerSize, algorithmic) { CV_ArucoDetectionMarkerSize test; test.safe_run(); } TEST(CV_ArucoBitCorrection, algorithmic) { CV_ArucoBitCorrection test; test.safe_run(); } }} // namespace