Structured forests for fast edge detection {#tutorial_ximgproc_prediction} ========================================== Introduction ------------ In this tutorial you will learn how to use structured forests for the purpose of edge detection in an image. Examples -------- ![image](images/01.jpg) ![image](images/02.jpg) ![image](images/03.jpg) ![image](images/04.jpg) ![image](images/05.jpg) ![image](images/06.jpg) ![image](images/07.jpg) ![image](images/08.jpg) ![image](images/09.jpg) ![image](images/10.jpg) ![image](images/11.jpg) ![image](images/12.jpg) @note binarization techniques like Canny edge detector are applicable to edges produced by both algorithms (Sobel and StructuredEdgeDetection::detectEdges). Source Code ----------- @includelineno ximgproc/samples/structured_edge_detection.cpp Explanation ----------- -# **Load source color image** @code{.cpp} cv::Mat image = cv::imread(inFilename, 1); if ( image.empty() ) { printf("Cannot read image file: %s\n", inFilename.c_str()); return -1; } @endcode -# **Convert source image to [0;1] range** @code{.cpp} image.convertTo(image, cv::DataType::type, 1/255.0); @endcode -# **Run main algorithm** @code{.cpp} cv::Mat edges(image.size(), image.type()); cv::Ptr pDollar = cv::createStructuredEdgeDetection(modelFilename); pDollar->detectEdges(image, edges); @endcode -# **Show results** @code{.cpp} if ( outFilename == "" ) { cv::namedWindow("edges", 1); cv::imshow("edges", edges); cv::waitKey(0); } else cv::imwrite(outFilename, 255*edges); @endcode Literature ---------- For more information, refer to the following papers : @cite Dollar2013 @cite Lim2013