/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2014, Itseez Inc, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Itseez Inc or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include #include #ifdef HAVE_OPENCV_TEXT #include "opencv2/datasets/tr_svt.hpp" #include #include "opencv2/text.hpp" #include "opencv2/imgproc.hpp" #include "opencv2/imgcodecs.hpp" #include #include // atoi #include #include using namespace std; using namespace cv; using namespace cv::datasets; using namespace cv::text; //Calculate edit distance between two words size_t edit_distance(const string& A, const string& B); size_t min(size_t x, size_t y, size_t z); bool isRepetitive(const string& s); bool sort_by_lenght(const string &a, const string &b); //Draw ER's in an image via floodFill void er_draw(vector &channels, vector > ®ions, vector group, Mat& segmentation); size_t min(size_t x, size_t y, size_t z) { return x < y ? min(x,z) : min(y,z); } size_t edit_distance(const string& A, const string& B) { size_t NA = A.size(); size_t NB = B.size(); vector< vector > M(NA + 1, vector(NB + 1)); for (size_t a = 0; a <= NA; ++a) M[a][0] = a; for (size_t b = 0; b <= NB; ++b) M[0][b] = b; for (size_t a = 1; a <= NA; ++a) for (size_t b = 1; b <= NB; ++b) { size_t x = M[a-1][b] + 1; size_t y = M[a][b-1] + 1; size_t z = M[a-1][b-1] + (A[a-1] == B[b-1] ? 0 : 1); M[a][b] = min(x,y,z); } return M[A.size()][B.size()]; } bool sort_by_lenght(const string &a, const string &b){return (a.size()>b.size());} bool isRepetitive(const string& s) { int count = 0; for (int i=0; i<(int)s.size(); i++) { if ((s[i] == 'i') || (s[i] == 'l') || (s[i] == 'I')) count++; } if (count > ((int)s.size()+1)/2) { return true; } return false; } void er_draw(vector &channels, vector > ®ions, vector group, Mat& segmentation) { for (int r=0; r<(int)group.size(); r++) { ERStat er = regions[group[r][0]][group[r][1]]; if (er.parent != NULL) // deprecate the root region { int newMaskVal = 255; int flags = 4 + (newMaskVal << 8) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY; floodFill(channels[group[r][0]],segmentation,Point(er.pixel%channels[group[r][0]].cols,er.pixel/channels[group[r][0]].cols), Scalar(255),0,Scalar(er.level),Scalar(0),flags); } } } // std::toupper is int->int static char char_toupper(char ch) { return (char)std::toupper((int)ch); } int main(int argc, char *argv[]) { const char *keys = "{ help h usage ? | | show this message }" "{ path p |true| path to dataset xml files }"; CommandLineParser parser(argc, argv, keys); string path(parser.get("path")); if (parser.has("help") || path=="true") { parser.printMessage(); return -1; } // loading train & test images description Ptr dataset = TR_svt::create(); dataset->load(path); vector f1Each; unsigned int correctNum = 0; unsigned int returnedNum = 0; unsigned int returnedCorrectNum = 0; vector< Ptr >& test = dataset->getTest(); unsigned int num = 0; for (vector< Ptr >::iterator itT=test.begin(); itT!=test.end(); ++itT) { TR_svtObj *example = static_cast((*itT).get()); num++; printf("processed image: %u, name: %s\n", num, example->fileName.c_str()); correctNum += example->tags.size(); /* printf("\ntags:\n"); for (vector::iterator it=example->tags.begin(); it!=example->tags.end(); ++it) { tag &t = (*it); printf("%s\nx: %u, y: %u, width: %u, height: %u\n", t.value.c_str(), t.x, t.y, t.x+t.width, t.y+t.height); }*/ unsigned int correctNumEach = example->tags.size(); unsigned int returnedNumEach = 0; unsigned int returnedCorrectNumEach = 0; Mat image = imread((path+example->fileName).c_str()); /*Text Detection*/ // Extract channels to be processed individually vector channels; Mat grey; cvtColor(image,grey,COLOR_RGB2GRAY); // Notice here we are only using grey channel, see textdetection.cpp for example with more channels channels.push_back(grey); channels.push_back(255-grey); // Create ERFilter objects with the 1st and 2nd stage default classifiers Ptr er_filter1 = createERFilterNM1(loadClassifierNM1("trained_classifierNM1.xml"),8,0.00015f,0.13f,0.2f,true,0.1f); Ptr er_filter2 = createERFilterNM2(loadClassifierNM2("trained_classifierNM2.xml"),0.5); vector > regions(channels.size()); // Apply the default cascade classifier to each independent channel (could be done in parallel) for (int c=0; c<(int)channels.size(); c++) { er_filter1->run(channels[c], regions[c]); er_filter2->run(channels[c], regions[c]); } // Detect character groups vector< vector > nm_region_groups; vector nm_boxes; erGrouping(image, channels, regions, nm_region_groups, nm_boxes, ERGROUPING_ORIENTATION_HORIZ); /*Text Recognition (OCR)*/ Ptr ocr = OCRTesseract::create(); for (int i=0; i<(int)nm_boxes.size(); i++) { Mat group_img = Mat::zeros(image.rows+2, image.cols+2, CV_8UC1); er_draw(channels, regions, nm_region_groups[i], group_img); group_img(nm_boxes[i]).copyTo(group_img); copyMakeBorder(group_img,group_img,15,15,15,15,BORDER_CONSTANT,Scalar(0)); string output; vector boxes; vector words; vector confidences; ocr->run(group_img, output, &boxes, &words, &confidences, OCR_LEVEL_WORD); output.erase(remove(output.begin(), output.end(), '\n'), output.end()); //cout << "OCR output = \"" << output << "\" length = " << output.size() << endl; if (output.size() < 3) continue; for (int j=0; j<(int)boxes.size(); j++) { boxes[j].x += nm_boxes[i].x-15; boxes[j].y += nm_boxes[i].y-15; //cout << " word = " << words[j] << "\t confidence = " << confidences[j] << endl; if ((words[j].size() < 2) || (confidences[j] < 51) || ((words[j].size()==2) && (words[j][0] == words[j][1])) || ((words[j].size()< 4) && (confidences[j] < 60)) || isRepetitive(words[j])) { continue; } std::transform(words[j].begin(), words[j].end(), words[j].begin(), char_toupper); if (find(example->lex.begin(), example->lex.end(), words[j]) == example->lex.end()) { continue; } returnedNum++; returnedNumEach++; /*printf("%s\nx: %u, y: %u, width: %u, height: %u\n", words[j].c_str(), boxes[j].tl().x, boxes[j].tl().y, boxes[j].br().x, boxes[j].br().y);*/ for (vector::iterator it=example->tags.begin(); it!=example->tags.end(); ++it) { tag &t = (*it); if (t.value==words[j] && !(boxes[j].tl().x > t.x+t.width || boxes[j].br().x < t.x || boxes[j].tl().y > t.y+t.height || boxes[j].br().y < t.y)) { returnedCorrectNum++; returnedCorrectNumEach++; break; } } } } double p = 0.0; if (0 != returnedNumEach) { p = 1.0*returnedCorrectNumEach/returnedNumEach; } double r = 0.0; if (0 != correctNumEach) { r = 1.0*returnedCorrectNumEach/correctNumEach; } double f1 = 0.0; if (0 != p+r) { f1 = 2*(p*r)/(p+r); } //printf("|%f|\n", f1); f1Each.push_back(f1); } double p = 1.0*returnedCorrectNum/returnedNum; double r = 1.0*returnedCorrectNum/correctNum; double f1 = 2*(p*r)/(p+r); printf("f1: %f\n", f1); /*double f1 = 0.0; for (vector::iterator it=f1Each.begin(); it!=f1Each.end(); ++it) { f1 += *it; } f1 /= f1Each.size(); printf("mean f1: %f\n", f1);*/ return 0; } #else int main() { std::cerr << "OpenCV was built without text module" << std::endl; return 0; } #endif // HAVE_OPENCV_TEXT