#include "opencv2/datasets/pd_inria.hpp" #include #include #include using namespace std; using namespace cv; using namespace cv::datasets; int main(int argc, char *argv[]) { const char *keys = "{ help h usage ? | | show this message }" "{ path p |true | path to dataset }" "{ save s |false| save resized positive images }" "{ rwidth rw |64 | width of resized positive images }" "{ rheight rh |128 | height of resized positive images }" "{ padding |8 | vertical padding of resized positive images }"; CommandLineParser parser(argc, argv, keys); bool savebbox = parser.get("save"); int rwidth = parser.get("rwidth"); int rheight = parser.get("rheight"); int padding = parser.get("padding"); string path(parser.get("path")); if (parser.has("help") || path=="true") { parser.printMessage(); return -1; } Ptr dataset = PD_inria::create(); dataset->load(path); size_t train_size = dataset->getTrain().size(); size_t test_size = dataset->getTest().size(); cout << "train size: " << train_size << endl; cout << "test size: " << test_size << endl; int bbox_count = 0; for( size_t i = 0; i < train_size; i++ ) { PD_inriaObj *example = static_cast(dataset->getTrain()[i].get()); cout << "\ntrain object index: " << i << endl; cout << "file name: " << example->filename << endl; // image size cout << "image size: " << endl; cout << " - width: " << example->width << endl; cout << " - height: " << example->height << endl; cout << " - depth: " << example->depth << endl; Mat img = imread( example->filename ); // bounding boxes for ( size_t j = 0; j < example->bndboxes.size(); j++ ) { Rect obj_bndbox = example->bndboxes[j]; // bounding box of object cout << " - bounding box: " << j << " - " << obj_bndbox << endl; int vpadding, hpadding; Rect ex_bndbox; // variable used for calculating expanded bounding box vpadding = cvRound(padding * obj_bndbox.height / rheight); // calculate vertical padding ex_bndbox.y = obj_bndbox.y - vpadding; ex_bndbox.height = 2 * vpadding + obj_bndbox.height; ex_bndbox.x = obj_bndbox.x + (obj_bndbox.width / 2); ex_bndbox.width = ex_bndbox.height * rwidth / rheight; ex_bndbox.x -= (ex_bndbox.width + 1) / 2; if (obj_bndbox.width > ex_bndbox.width) { obj_bndbox.x += (obj_bndbox.width - ex_bndbox.width + 1) / 2; obj_bndbox.width = ex_bndbox.width; } hpadding = obj_bndbox.x - ex_bndbox.x; // calculate horizontal padding if(savebbox) { Mat dst; copyMakeBorder(img(obj_bndbox), dst, vpadding, vpadding, hpadding, hpadding, BORDER_REFLECT); resize(dst, dst, Size(rwidth, rheight), 0, 0, INTER_AREA); imwrite(path + format("person_%04d.png", bbox_count++), dst); } else rectangle(img, obj_bndbox, Scalar(0, 0, 255), 2); } if (savebbox) continue; // skip UI updates imshow("INRIAPerson Dataset Train Images", img); cout << "\nPress a key to continue or ESC to exit." << endl; int key = waitKey(); if( key == 27 ) break; } return 0; }