#include #include #include #include #include "opencv2/core.hpp" #include "opencv2/core/utility.hpp" #include "opencv2/highgui.hpp" #include "opencv2/imgproc.hpp" #include "opencv2/cudaoptflow.hpp" #include "opencv2/cudaarithm.hpp" #include "opencv2/video/tracking.hpp" using namespace std; using namespace cv; using namespace cv::cuda; //this function is taken from opencv/samples/gpu/optical_flow.cpp inline bool isFlowCorrect(Point2f u) { return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9; } //this function is taken from opencv/samples/gpu/optical_flow.cpp static Vec3b computeColor(float fx, float fy) { static bool first = true; // relative lengths of color transitions: // these are chosen based on perceptual similarity // (e.g. one can distinguish more shades between red and yellow // than between yellow and green) const int RY = 15; const int YG = 6; const int GC = 4; const int CB = 11; const int BM = 13; const int MR = 6; const int NCOLS = RY + YG + GC + CB + BM + MR; static Vec3i colorWheel[NCOLS]; if (first) { int k = 0; for (int i = 0; i < RY; ++i, ++k) colorWheel[k] = Vec3i(255, 255 * i / RY, 0); for (int i = 0; i < YG; ++i, ++k) colorWheel[k] = Vec3i(255 - 255 * i / YG, 255, 0); for (int i = 0; i < GC; ++i, ++k) colorWheel[k] = Vec3i(0, 255, 255 * i / GC); for (int i = 0; i < CB; ++i, ++k) colorWheel[k] = Vec3i(0, 255 - 255 * i / CB, 255); for (int i = 0; i < BM; ++i, ++k) colorWheel[k] = Vec3i(255 * i / BM, 0, 255); for (int i = 0; i < MR; ++i, ++k) colorWheel[k] = Vec3i(255, 0, 255 - 255 * i / MR); first = false; } const float rad = sqrt(fx * fx + fy * fy); const float a = atan2(-fy, -fx) / (float)CV_PI; const float fk = (a + 1.0f) / 2.0f * (NCOLS - 1); const int k0 = static_cast(fk); const int k1 = (k0 + 1) % NCOLS; const float f = fk - k0; Vec3b pix; for (int b = 0; b < 3; b++) { const float col0 = colorWheel[k0][b] / 255.0f; const float col1 = colorWheel[k1][b] / 255.0f; float col = (1 - f) * col0 + f * col1; if (rad <= 1) col = 1 - rad * (1 - col); // increase saturation with radius else col *= .75; // out of range pix[2 - b] = static_cast(255.0 * col); } return pix; } //this function is taken from opencv/samples/gpu/optical_flow.cpp static void drawOpticalFlow(const Mat_& flowx, const Mat_& flowy , Mat& dst, float maxmotion = -1) { dst.create(flowx.size(), CV_8UC3); dst.setTo(Scalar::all(0)); // determine motion range: float maxrad = maxmotion; if (maxmotion <= 0) { maxrad = 1; for (int y = 0; y < flowx.rows; ++y) { for (int x = 0; x < flowx.cols; ++x) { Point2f u(flowx(y, x), flowy(y, x)); if (!isFlowCorrect(u)) continue; maxrad = max(maxrad, sqrt(u.x * u.x + u.y * u.y)); } } } for (int y = 0; y < flowx.rows; ++y) { for (int x = 0; x < flowx.cols; ++x) { Point2f u(flowx(y, x), flowy(y, x)); if (isFlowCorrect(u)) dst.at(y, x) = computeColor(u.x / maxrad, u.y / maxrad); } } } int main(int argc, char **argv) { std::unordered_map presetMap = { { "slow", NvidiaOpticalFlow_1_0::NVIDIA_OF_PERF_LEVEL::NV_OF_PERF_LEVEL_SLOW }, { "medium", NvidiaOpticalFlow_1_0::NVIDIA_OF_PERF_LEVEL::NV_OF_PERF_LEVEL_MEDIUM }, { "fast", NvidiaOpticalFlow_1_0::NVIDIA_OF_PERF_LEVEL::NV_OF_PERF_LEVEL_FAST } }; try { CommandLineParser cmd(argc, argv, "{ l left | ../data/basketball1.png | specify left image }" "{ r right | ../data/basketball2.png | specify right image }" "{ g gpuid | 0 | cuda device index}" "{ p preset | slow | perf preset for OF algo [ options : slow, medium, fast ]}" "{ o output | OpenCVNvOF.flo | output flow vector file in middlebury format}" "{ th enableTemporalHints | false | Enable temporal hints}" "{ eh enableExternalHints | false | Enable external hints}" "{ cb enableCostBuffer | false | Enable output cost buffer}" "{ h help | | print help message }"); cmd.about("Nvidia's optical flow sample."); if (cmd.has("help") || !cmd.check()) { cmd.printMessage(); cmd.printErrors(); return 0; } string pathL = cmd.get("left"); string pathR = cmd.get("right"); string preset = cmd.get("preset"); string output = cmd.get("output"); bool enableExternalHints = cmd.get("enableExternalHints"); bool enableTemporalHints = cmd.get("enableTemporalHints"); bool enableCostBuffer = cmd.get("enableCostBuffer"); int gpuId = cmd.get("gpuid"); if (pathL.empty()) cout << "Specify left image path\n"; if (pathR.empty()) cout << "Specify right image path\n"; if (preset.empty()) cout << "Specify perf preset for OpticalFlow algo\n"; if (pathL.empty() || pathR.empty()) return 0; auto search = presetMap.find(preset); if (search == presetMap.end()) { std::cout << "Invalid preset level : " << preset << std::endl; return 0; } NvidiaOpticalFlow_1_0::NVIDIA_OF_PERF_LEVEL perfPreset = search->second; Mat frameL = imread(pathL, IMREAD_GRAYSCALE); Mat frameR = imread(pathR, IMREAD_GRAYSCALE); if (frameL.empty()) cout << "Can't open '" << pathL << "'\n"; if (frameR.empty()) cout << "Can't open '" << pathR << "'\n"; if (frameL.empty() || frameR.empty()) return -1; Ptr nvof = NvidiaOpticalFlow_1_0::create( frameL.size().width, frameL.size().height, perfPreset, enableTemporalHints, enableExternalHints, enableCostBuffer, gpuId); Mat flowx, flowy, flowxy, upsampledFlowXY, image; nvof->calc(frameL, frameR, flowxy); nvof->upSampler(flowxy, frameL.size().width, frameL.size().height, nvof->getGridSize(), upsampledFlowXY); if (output.size() != 0) { if (!writeOpticalFlow(output, upsampledFlowXY)) cout << "Failed to save Flow Vector" << endl; else cout << "Flow vector saved as '" << output << "'\n"; } Mat planes[] = { flowx, flowy }; split(upsampledFlowXY, planes); flowx = planes[0]; flowy = planes[1]; drawOpticalFlow(flowx, flowy, image, 10); imshow("Colorize image",image); waitKey(0); nvof->collectGarbage(); } catch (const std::exception &ex) { std::cout << ex.what() << std::endl; return 1; } return 0; }