226 lines
6.9 KiB
C++
226 lines
6.9 KiB
C++
|
#include <iostream>
|
||
|
#include <stdio.h>
|
||
|
#include "opencv2/core.hpp"
|
||
|
#include "opencv2/core/utility.hpp"
|
||
|
#include "opencv2/core/ocl.hpp"
|
||
|
#include "opencv2/imgcodecs.hpp"
|
||
|
#include "opencv2/highgui.hpp"
|
||
|
#include "opencv2/features2d.hpp"
|
||
|
#include "opencv2/calib3d.hpp"
|
||
|
#include "opencv2/imgproc.hpp"
|
||
|
#include "opencv2/xfeatures2d.hpp"
|
||
|
|
||
|
using namespace cv;
|
||
|
using namespace cv::xfeatures2d;
|
||
|
|
||
|
const int LOOP_NUM = 10;
|
||
|
const int GOOD_PTS_MAX = 50;
|
||
|
const float GOOD_PORTION = 0.15f;
|
||
|
|
||
|
int64 work_begin = 0;
|
||
|
int64 work_end = 0;
|
||
|
|
||
|
static void workBegin()
|
||
|
{
|
||
|
work_begin = getTickCount();
|
||
|
}
|
||
|
|
||
|
static void workEnd()
|
||
|
{
|
||
|
work_end = getTickCount() - work_begin;
|
||
|
}
|
||
|
|
||
|
static double getTime()
|
||
|
{
|
||
|
return work_end /((double)getTickFrequency() )* 1000.;
|
||
|
}
|
||
|
|
||
|
struct SURFDetector
|
||
|
{
|
||
|
Ptr<Feature2D> surf;
|
||
|
SURFDetector(double hessian = 800.0)
|
||
|
{
|
||
|
surf = SURF::create(hessian);
|
||
|
}
|
||
|
template<class T>
|
||
|
void operator()(const T& in, const T& mask, std::vector<cv::KeyPoint>& pts, T& descriptors, bool useProvided = false)
|
||
|
{
|
||
|
surf->detectAndCompute(in, mask, pts, descriptors, useProvided);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<class KPMatcher>
|
||
|
struct SURFMatcher
|
||
|
{
|
||
|
KPMatcher matcher;
|
||
|
template<class T>
|
||
|
void match(const T& in1, const T& in2, std::vector<cv::DMatch>& matches)
|
||
|
{
|
||
|
matcher.match(in1, in2, matches);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
static Mat drawGoodMatches(
|
||
|
const Mat& img1,
|
||
|
const Mat& img2,
|
||
|
const std::vector<KeyPoint>& keypoints1,
|
||
|
const std::vector<KeyPoint>& keypoints2,
|
||
|
std::vector<DMatch>& matches,
|
||
|
std::vector<Point2f>& scene_corners_
|
||
|
)
|
||
|
{
|
||
|
//-- Sort matches and preserve top 10% matches
|
||
|
std::sort(matches.begin(), matches.end());
|
||
|
std::vector< DMatch > good_matches;
|
||
|
double minDist = matches.front().distance;
|
||
|
double maxDist = matches.back().distance;
|
||
|
|
||
|
const int ptsPairs = std::min(GOOD_PTS_MAX, (int)(matches.size() * GOOD_PORTION));
|
||
|
for( int i = 0; i < ptsPairs; i++ )
|
||
|
{
|
||
|
good_matches.push_back( matches[i] );
|
||
|
}
|
||
|
std::cout << "\nMax distance: " << maxDist << std::endl;
|
||
|
std::cout << "Min distance: " << minDist << std::endl;
|
||
|
|
||
|
std::cout << "Calculating homography using " << ptsPairs << " point pairs." << std::endl;
|
||
|
|
||
|
// drawing the results
|
||
|
Mat img_matches;
|
||
|
|
||
|
drawMatches( img1, keypoints1, img2, keypoints2,
|
||
|
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
|
||
|
std::vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
|
||
|
|
||
|
//-- Localize the object
|
||
|
std::vector<Point2f> obj;
|
||
|
std::vector<Point2f> scene;
|
||
|
|
||
|
for( size_t i = 0; i < good_matches.size(); i++ )
|
||
|
{
|
||
|
//-- Get the keypoints from the good matches
|
||
|
obj.push_back( keypoints1[ good_matches[i].queryIdx ].pt );
|
||
|
scene.push_back( keypoints2[ good_matches[i].trainIdx ].pt );
|
||
|
}
|
||
|
//-- Get the corners from the image_1 ( the object to be "detected" )
|
||
|
std::vector<Point2f> obj_corners(4);
|
||
|
obj_corners[0] = Point(0,0);
|
||
|
obj_corners[1] = Point( img1.cols, 0 );
|
||
|
obj_corners[2] = Point( img1.cols, img1.rows );
|
||
|
obj_corners[3] = Point( 0, img1.rows );
|
||
|
std::vector<Point2f> scene_corners(4);
|
||
|
|
||
|
Mat H = findHomography( obj, scene, RANSAC );
|
||
|
perspectiveTransform( obj_corners, scene_corners, H);
|
||
|
|
||
|
scene_corners_ = scene_corners;
|
||
|
|
||
|
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
|
||
|
line( img_matches,
|
||
|
scene_corners[0] + Point2f( (float)img1.cols, 0), scene_corners[1] + Point2f( (float)img1.cols, 0),
|
||
|
Scalar( 0, 255, 0), 2, LINE_AA );
|
||
|
line( img_matches,
|
||
|
scene_corners[1] + Point2f( (float)img1.cols, 0), scene_corners[2] + Point2f( (float)img1.cols, 0),
|
||
|
Scalar( 0, 255, 0), 2, LINE_AA );
|
||
|
line( img_matches,
|
||
|
scene_corners[2] + Point2f( (float)img1.cols, 0), scene_corners[3] + Point2f( (float)img1.cols, 0),
|
||
|
Scalar( 0, 255, 0), 2, LINE_AA );
|
||
|
line( img_matches,
|
||
|
scene_corners[3] + Point2f( (float)img1.cols, 0), scene_corners[0] + Point2f( (float)img1.cols, 0),
|
||
|
Scalar( 0, 255, 0), 2, LINE_AA );
|
||
|
return img_matches;
|
||
|
}
|
||
|
|
||
|
////////////////////////////////////////////////////
|
||
|
// This program demonstrates the usage of SURF_OCL.
|
||
|
// use cpu findHomography interface to calculate the transformation matrix
|
||
|
int main(int argc, char* argv[])
|
||
|
{
|
||
|
const char* keys =
|
||
|
"{ h help | | print help message }"
|
||
|
"{ l left | box.png | specify left image }"
|
||
|
"{ r right | box_in_scene.png | specify right image }"
|
||
|
"{ o output | SURF_output.jpg | specify output save path }"
|
||
|
"{ m cpu_mode | | run without OpenCL }";
|
||
|
|
||
|
CommandLineParser cmd(argc, argv, keys);
|
||
|
if (cmd.has("help"))
|
||
|
{
|
||
|
std::cout << "Usage: surf_matcher [options]" << std::endl;
|
||
|
std::cout << "Available options:" << std::endl;
|
||
|
cmd.printMessage();
|
||
|
return EXIT_SUCCESS;
|
||
|
}
|
||
|
if (cmd.has("cpu_mode"))
|
||
|
{
|
||
|
ocl::setUseOpenCL(false);
|
||
|
std::cout << "OpenCL was disabled" << std::endl;
|
||
|
}
|
||
|
|
||
|
UMat img1, img2;
|
||
|
|
||
|
std::string outpath = cmd.get<std::string>("o");
|
||
|
|
||
|
std::string leftName = cmd.get<std::string>("l");
|
||
|
imread(leftName, IMREAD_GRAYSCALE).copyTo(img1);
|
||
|
if(img1.empty())
|
||
|
{
|
||
|
std::cout << "Couldn't load " << leftName << std::endl;
|
||
|
cmd.printMessage();
|
||
|
return EXIT_FAILURE;
|
||
|
}
|
||
|
|
||
|
std::string rightName = cmd.get<std::string>("r");
|
||
|
imread(rightName, IMREAD_GRAYSCALE).copyTo(img2);
|
||
|
if(img2.empty())
|
||
|
{
|
||
|
std::cout << "Couldn't load " << rightName << std::endl;
|
||
|
cmd.printMessage();
|
||
|
return EXIT_FAILURE;
|
||
|
}
|
||
|
|
||
|
double surf_time = 0.;
|
||
|
|
||
|
//declare input/output
|
||
|
std::vector<KeyPoint> keypoints1, keypoints2;
|
||
|
std::vector<DMatch> matches;
|
||
|
|
||
|
UMat _descriptors1, _descriptors2;
|
||
|
Mat descriptors1 = _descriptors1.getMat(ACCESS_RW),
|
||
|
descriptors2 = _descriptors2.getMat(ACCESS_RW);
|
||
|
|
||
|
//instantiate detectors/matchers
|
||
|
SURFDetector surf;
|
||
|
|
||
|
SURFMatcher<BFMatcher> matcher;
|
||
|
|
||
|
//-- start of timing section
|
||
|
|
||
|
for (int i = 0; i <= LOOP_NUM; i++)
|
||
|
{
|
||
|
if(i == 1) workBegin();
|
||
|
surf(img1.getMat(ACCESS_READ), Mat(), keypoints1, descriptors1);
|
||
|
surf(img2.getMat(ACCESS_READ), Mat(), keypoints2, descriptors2);
|
||
|
matcher.match(descriptors1, descriptors2, matches);
|
||
|
}
|
||
|
workEnd();
|
||
|
std::cout << "FOUND " << keypoints1.size() << " keypoints on first image" << std::endl;
|
||
|
std::cout << "FOUND " << keypoints2.size() << " keypoints on second image" << std::endl;
|
||
|
|
||
|
surf_time = getTime();
|
||
|
std::cout << "SURF run time: " << surf_time / LOOP_NUM << " ms" << std::endl<<"\n";
|
||
|
|
||
|
|
||
|
std::vector<Point2f> corner;
|
||
|
Mat img_matches = drawGoodMatches(img1.getMat(ACCESS_READ), img2.getMat(ACCESS_READ), keypoints1, keypoints2, matches, corner);
|
||
|
|
||
|
//-- Show detected matches
|
||
|
|
||
|
namedWindow("surf matches", 0);
|
||
|
imshow("surf matches", img_matches);
|
||
|
imwrite(outpath, img_matches);
|
||
|
|
||
|
waitKey(0);
|
||
|
return EXIT_SUCCESS;
|
||
|
}
|