38 lines
1.3 KiB
Python
38 lines
1.3 KiB
Python
|
# -*- coding: utf-8 -*-
|
||
|
#!/usr/bin/python
|
||
|
import sys
|
||
|
import os
|
||
|
import cv2 as cv
|
||
|
import numpy as np
|
||
|
|
||
|
def main():
|
||
|
print('\nDeeptextdetection.py')
|
||
|
print(' A demo script of text box alogorithm of the paper:')
|
||
|
print(' * Minghui Liao et al.: TextBoxes: A Fast Text Detector with a Single Deep Neural Network https://arxiv.org/abs/1611.06779\n')
|
||
|
|
||
|
if (len(sys.argv) < 2):
|
||
|
print(' (ERROR) You must call this script with an argument (path_to_image_to_be_processed)\n')
|
||
|
quit()
|
||
|
|
||
|
if not os.path.isfile('TextBoxes_icdar13.caffemodel') or not os.path.isfile('textbox.prototxt'):
|
||
|
print " Model files not found in current directory. Aborting"
|
||
|
print " See the documentation of text::TextDetectorCNN class to get download links."
|
||
|
quit()
|
||
|
|
||
|
img = cv.imread(str(sys.argv[1]))
|
||
|
textSpotter = cv.text.TextDetectorCNN_create("textbox.prototxt", "TextBoxes_icdar13.caffemodel")
|
||
|
rects, outProbs = textSpotter.detect(img);
|
||
|
vis = img.copy()
|
||
|
thres = 0.6
|
||
|
|
||
|
for r in range(np.shape(rects)[0]):
|
||
|
if outProbs[r] > thres:
|
||
|
rect = rects[r]
|
||
|
cv.rectangle(vis, (rect[0],rect[1]), (rect[0] + rect[2], rect[1] + rect[3]), (255, 0, 0), 2)
|
||
|
|
||
|
cv.imshow("Text detection result", vis)
|
||
|
cv.waitKey()
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|