OpenCV_4.2.0/opencv_contrib-4.2.0/modules/optflow/samples/optical_flow_evaluation.cpp

412 lines
15 KiB
C++
Raw Normal View History

2024-07-25 16:47:56 +08:00
#include "opencv2/highgui.hpp"
#include "opencv2/video.hpp"
#include "opencv2/optflow.hpp"
#include "opencv2/core/ocl.hpp"
#include <fstream>
#include <limits>
using namespace std;
using namespace cv;
using namespace optflow;
const String keys = "{help h usage ? | | print this message }"
"{@image1 | | image1 }"
"{@image2 | | image2 }"
"{@algorithm | | [farneback, simpleflow, tvl1, deepflow, sparsetodenseflow, RLOF_EPIC, RLOF_RIC, pcaflow, DISflow_ultrafast, DISflow_fast, DISflow_medium] }"
"{@groundtruth | | path to the .flo file (optional), Middlebury format }"
"{m measure |endpoint| error measure - [endpoint or angular] }"
"{r region |all | region to compute stats about [all, discontinuities, untextured] }"
"{d display | | display additional info images (pauses program execution) }"
"{g gpu | | use OpenCL}"
"{prior | | path to a prior file for PCAFlow}";
inline bool isFlowCorrect( const Point2f u )
{
return !cvIsNaN(u.x) && !cvIsNaN(u.y) && (fabs(u.x) < 1e9) && (fabs(u.y) < 1e9);
}
inline bool isFlowCorrect( const Point3f u )
{
return !cvIsNaN(u.x) && !cvIsNaN(u.y) && !cvIsNaN(u.z) && (fabs(u.x) < 1e9) && (fabs(u.y) < 1e9)
&& (fabs(u.z) < 1e9);
}
static Mat endpointError( const Mat_<Point2f>& flow1, const Mat_<Point2f>& flow2 )
{
Mat result(flow1.size(), CV_32FC1);
for ( int i = 0; i < flow1.rows; ++i )
{
for ( int j = 0; j < flow1.cols; ++j )
{
const Point2f u1 = flow1(i, j);
const Point2f u2 = flow2(i, j);
if ( isFlowCorrect(u1) && isFlowCorrect(u2) )
{
const Point2f diff = u1 - u2;
result.at<float>(i, j) = sqrt((float)diff.ddot(diff)); //distance
} else
result.at<float>(i, j) = std::numeric_limits<float>::quiet_NaN();
}
}
return result;
}
static Mat angularError( const Mat_<Point2f>& flow1, const Mat_<Point2f>& flow2 )
{
Mat result(flow1.size(), CV_32FC1);
for ( int i = 0; i < flow1.rows; ++i )
{
for ( int j = 0; j < flow1.cols; ++j )
{
const Point2f u1_2d = flow1(i, j);
const Point2f u2_2d = flow2(i, j);
const Point3f u1(u1_2d.x, u1_2d.y, 1);
const Point3f u2(u2_2d.x, u2_2d.y, 1);
if ( isFlowCorrect(u1) && isFlowCorrect(u2) )
result.at<float>(i, j) = acos((float)(u1.ddot(u2) / norm(u1) * norm(u2)));
else
result.at<float>(i, j) = std::numeric_limits<float>::quiet_NaN();
}
}
return result;
}
// what fraction of pixels have errors higher than given threshold?
static float stat_RX( Mat errors, float threshold, Mat mask )
{
CV_Assert(errors.size() == mask.size());
CV_Assert(mask.depth() == CV_8U);
int count = 0, all = 0;
for ( int i = 0; i < errors.rows; ++i )
{
for ( int j = 0; j < errors.cols; ++j )
{
if ( mask.at<char>(i, j) != 0 )
{
++all;
if ( errors.at<float>(i, j) > threshold )
++count;
}
}
}
return (float)count / all;
}
static float stat_AX( Mat hist, int cutoff_count, float max_value )
{
int counter = 0;
int bin = 0;
int bin_count = hist.rows;
while ( bin < bin_count && counter < cutoff_count )
{
counter += (int) hist.at<float>(bin, 0);
++bin;
}
return (float) bin / bin_count * max_value;
}
static void calculateStats( Mat errors, Mat mask = Mat(), bool display_images = false )
{
float R_thresholds[] = { 0.5f, 1.f, 2.f, 5.f, 10.f };
float A_thresholds[] = { 0.5f, 0.75f, 0.95f };
if ( mask.empty() )
mask = Mat::ones(errors.size(), CV_8U);
CV_Assert(errors.size() == mask.size());
CV_Assert(mask.depth() == CV_8U);
//displaying the mask
if(display_images)
{
namedWindow( "Region mask", WINDOW_AUTOSIZE );
imshow( "Region mask", mask );
}
//mean and std computation
Scalar s_mean, s_std;
float mean, std;
meanStdDev(errors, s_mean, s_std, mask);
mean = (float)s_mean[0];
std = (float)s_std[0];
printf("Average: %.2f\nStandard deviation: %.2f\n", mean, std);
//RX stats - displayed in percent
float R;
int R_thresholds_count = sizeof(R_thresholds) / sizeof(float);
for ( int i = 0; i < R_thresholds_count; ++i )
{
R = stat_RX(errors, R_thresholds[i], mask);
printf("R%.1f: %.2f%%\n", R_thresholds[i], R * 100);
}
//AX stats
double max_value;
minMaxLoc(errors, NULL, &max_value, NULL, NULL, mask);
Mat hist;
const int n_images = 1;
const int channels[] = { 0 };
const int n_dimensions = 1;
const int hist_bins[] = { 1024 };
const float iranges[] = { 0, (float) max_value };
const float* ranges[] = { iranges };
const bool uniform = true;
const bool accumulate = false;
calcHist(&errors, n_images, channels, mask, hist, n_dimensions, hist_bins, ranges, uniform,
accumulate);
int all_pixels = countNonZero(mask);
int cutoff_count;
float A;
int A_thresholds_count = sizeof(A_thresholds) / sizeof(float);
for ( int i = 0; i < A_thresholds_count; ++i )
{
cutoff_count = (int) (floor(A_thresholds[i] * all_pixels + 0.5f));
A = stat_AX(hist, cutoff_count, (float) max_value);
printf("A%.2f: %.2f\n", A_thresholds[i], A);
}
}
static Mat flowToDisplay(const Mat flow)
{
Mat flow_split[2];
Mat magnitude, angle;
Mat hsv_split[3], hsv, rgb;
split(flow, flow_split);
cartToPolar(flow_split[0], flow_split[1], magnitude, angle, true);
normalize(magnitude, magnitude, 0, 1, NORM_MINMAX);
hsv_split[0] = angle; // already in degrees - no normalization needed
hsv_split[1] = Mat::ones(angle.size(), angle.type());
hsv_split[2] = magnitude;
merge(hsv_split, 3, hsv);
cvtColor(hsv, rgb, COLOR_HSV2BGR);
return rgb;
}
int main( int argc, char** argv )
{
CommandLineParser parser(argc, argv, keys);
parser.about("OpenCV optical flow evaluation app");
if ( parser.has("help") || argc < 4 )
{
parser.printMessage();
printf("EXAMPLES:\n");
printf("./example_optflow_optical_flow_evaluation im1.png im2.png farneback -d \n");
printf("\t - compute flow field between im1 and im2 with farneback's method and display it");
printf("./example_optflow_optical_flow_evaluation im1.png im2.png simpleflow groundtruth.flo \n");
printf("\t - compute error statistics given the groundtruth; all pixels, endpoint error measure");
printf("./example_optflow_optical_flow_evaluation im1.png im2.png farneback groundtruth.flo -m=angular -r=untextured \n");
printf("\t - as before, but with changed error measure and stats computed only about \"untextured\" areas");
printf("\n\n Flow file format description: http://vision.middlebury.edu/flow/code/flow-code/README.txt\n\n");
return 0;
}
String i1_path = parser.get<String>(0);
String i2_path = parser.get<String>(1);
String method = parser.get<String>(2);
String groundtruth_path = parser.get<String>(3);
String error_measure = parser.get<String>("measure");
String region = parser.get<String>("region");
bool display_images = parser.has("display");
const bool useGpu = parser.has("gpu");
if ( !parser.check() )
{
parser.printErrors();
return 0;
}
cv::ocl::setUseOpenCL(useGpu);
printf("OpenCL Enabled: %u\n", useGpu && cv::ocl::haveOpenCL());
Mat i1, i2;
Mat_<Point2f> flow, ground_truth;
Mat computed_errors;
i1 = imread(i1_path, 1);
i2 = imread(i2_path, 1);
if ( !i1.data || !i2.data )
{
printf("No image data \n");
return -1;
}
if ( i1.size() != i2.size() || i1.channels() != i2.channels() )
{
printf("Dimension mismatch between input images\n");
return -1;
}
// 8-bit images expected by all algorithms
if ( i1.depth() != CV_8U )
i1.convertTo(i1, CV_8U);
if ( i2.depth() != CV_8U )
i2.convertTo(i2, CV_8U);
if ( (method == "farneback" || method == "tvl1" || method == "deepflow" || method == "DISflow_ultrafast" || method == "DISflow_fast" || method == "DISflow_medium") && i1.channels() == 3 )
{ // 1-channel images are expected
cvtColor(i1, i1, COLOR_BGR2GRAY);
cvtColor(i2, i2, COLOR_BGR2GRAY);
} else if ( method == "simpleflow" && i1.channels() == 1 )
{ // 3-channel images expected
cvtColor(i1, i1, COLOR_GRAY2BGR);
cvtColor(i2, i2, COLOR_GRAY2BGR);
}
flow = Mat(i1.size[0], i1.size[1], CV_32FC2);
Ptr<DenseOpticalFlow> algorithm;
if ( method == "farneback" )
algorithm = createOptFlow_Farneback();
else if ( method == "simpleflow" )
algorithm = createOptFlow_SimpleFlow();
else if ( method == "tvl1" )
algorithm = createOptFlow_DualTVL1();
else if ( method == "deepflow" )
algorithm = createOptFlow_DeepFlow();
else if ( method == "sparsetodenseflow" )
algorithm = createOptFlow_SparseToDense();
else if (method == "RLOF_EPIC")
{
algorithm = createOptFlow_DenseRLOF();
Ptr<DenseRLOFOpticalFlow> rlof = algorithm.dynamicCast< DenseRLOFOpticalFlow>();
rlof->setInterpolation(INTERP_EPIC);
rlof->setForwardBackward(1.f);
}
else if (method == "RLOF_RIC")
{
algorithm = createOptFlow_DenseRLOF();
Ptr<DenseRLOFOpticalFlow> rlof = algorithm.dynamicCast< DenseRLOFOpticalFlow>();;
rlof->setInterpolation(INTERP_RIC);
rlof->setForwardBackward(1.f);
}
else if ( method == "pcaflow" ) {
if ( parser.has("prior") ) {
String prior = parser.get<String>("prior");
printf("Using prior file: %s\n", prior.c_str());
algorithm = makePtr<OpticalFlowPCAFlow>(makePtr<PCAPrior>(prior.c_str()));
}
else
algorithm = createOptFlow_PCAFlow();
}
else if ( method == "DISflow_ultrafast" )
algorithm = DISOpticalFlow::create(DISOpticalFlow::PRESET_ULTRAFAST);
else if (method == "DISflow_fast")
algorithm = DISOpticalFlow::create(DISOpticalFlow::PRESET_FAST);
else if (method == "DISflow_medium")
algorithm = DISOpticalFlow::create(DISOpticalFlow::PRESET_MEDIUM);
else
{
printf("Wrong method!\n");
parser.printMessage();
return -1;
}
double startTick, time;
startTick = (double) getTickCount(); // measure time
if (useGpu)
algorithm->calc(i1, i2, flow.getUMat(ACCESS_RW));
else
algorithm->calc(i1, i2, flow);
time = ((double) getTickCount() - startTick) / getTickFrequency();
printf("\nTime [s]: %.3f\n", time);
if(display_images)
{
Mat flow_image = flowToDisplay(flow);
namedWindow( "Computed flow", WINDOW_AUTOSIZE );
imshow( "Computed flow", flow_image );
}
if ( !groundtruth_path.empty() )
{ // compare to ground truth
ground_truth = readOpticalFlow(groundtruth_path);
if ( flow.size() != ground_truth.size() || flow.channels() != 2
|| ground_truth.channels() != 2 )
{
printf("Dimension mismatch between the computed flow and the provided ground truth\n");
return -1;
}
if ( error_measure == "endpoint" )
computed_errors = endpointError(flow, ground_truth);
else if ( error_measure == "angular" )
computed_errors = angularError(flow, ground_truth);
else
{
printf("Invalid error measure! Available options: endpoint, angular\n");
return -1;
}
Mat mask;
if( region == "all" )
mask = Mat::ones(ground_truth.size(), CV_8U) * 255;
else if ( region == "discontinuities" )
{
Mat truth_merged, grad_x, grad_y, gradient;
vector<Mat> truth_split;
split(ground_truth, truth_split);
truth_merged = truth_split[0] + truth_split[1];
Sobel( truth_merged, grad_x, CV_16S, 1, 0, -1, 1, 0, BORDER_REPLICATE );
grad_x = abs(grad_x);
Sobel( truth_merged, grad_y, CV_16S, 0, 1, 1, 1, 0, BORDER_REPLICATE );
grad_y = abs(grad_y);
addWeighted(grad_x, 0.5, grad_y, 0.5, 0, gradient); //approximation!
Scalar s_mean;
s_mean = mean(gradient);
double threshold = s_mean[0]; // threshold value arbitrary
mask = gradient > threshold;
dilate(mask, mask, Mat::ones(9, 9, CV_8U));
}
else if ( region == "untextured" )
{
Mat i1_grayscale, grad_x, grad_y, gradient;
if( i1.channels() == 3 )
cvtColor(i1, i1_grayscale, COLOR_BGR2GRAY);
else
i1_grayscale = i1;
Sobel( i1_grayscale, grad_x, CV_16S, 1, 0, 7 );
grad_x = abs(grad_x);
Sobel( i1_grayscale, grad_y, CV_16S, 0, 1, 7 );
grad_y = abs(grad_y);
addWeighted(grad_x, 0.5, grad_y, 0.5, 0, gradient); //approximation!
GaussianBlur(gradient, gradient, Size(5,5), 1, 1);
Scalar s_mean;
s_mean = mean(gradient);
// arbitrary threshold value used - could be determined statistically from the image?
double threshold = 1000;
mask = gradient < threshold;
dilate(mask, mask, Mat::ones(3, 3, CV_8U));
}
else
{
printf("Invalid region selected! Available options: all, discontinuities, untextured");
return -1;
}
//masking out NaNs and incorrect GT values
Mat truth_split[2];
split(ground_truth, truth_split);
Mat abs_mask = Mat((abs(truth_split[0]) < 1e9) & (abs(truth_split[1]) < 1e9));
Mat nan_mask = Mat((truth_split[0]==truth_split[0]) & (truth_split[1] == truth_split[1]));
bitwise_and(abs_mask, nan_mask, nan_mask);
bitwise_and(nan_mask, mask, mask); //including the selected region
if(display_images) // display difference between computed and GT flow
{
Mat difference = ground_truth - flow;
Mat masked_difference;
difference.copyTo(masked_difference, mask);
Mat flow_image = flowToDisplay(masked_difference);
namedWindow( "Error map", WINDOW_AUTOSIZE );
imshow( "Error map", flow_image );
}
printf("Using %s error measure\n", error_measure.c_str());
calculateStats(computed_errors, mask, display_images);
}
if(display_images) // wait for the user to see all the images
waitKey(0);
return 0;
}