30 lines
1.0 KiB
Python
30 lines
1.0 KiB
Python
|
import random
|
||
|
import numpy as np
|
||
|
import cv2 as cv
|
||
|
|
||
|
frame1 = cv.imread(cv.samples.findFile('lena.jpg'))
|
||
|
if frame1 is None:
|
||
|
print("image not found")
|
||
|
exit()
|
||
|
frame = np.vstack((frame1,frame1))
|
||
|
facemark = cv.face.createFacemarkLBF()
|
||
|
try:
|
||
|
facemark.loadModel(cv.samples.findFile('lbfmodel.yaml'))
|
||
|
except cv.error:
|
||
|
print("Model not found\nlbfmodel.yaml can be download at")
|
||
|
print("https://raw.githubusercontent.com/kurnianggoro/GSOC2017/master/data/lbfmodel.yaml")
|
||
|
cascade = cv.CascadeClassifier(cv.samples.findFile('lbpcascade_frontalface_improved.xml'))
|
||
|
if cascade.empty() :
|
||
|
print("cascade not found")
|
||
|
exit()
|
||
|
faces = cascade.detectMultiScale(frame, 1.05, 3, cv.CASCADE_SCALE_IMAGE, (30, 30))
|
||
|
ok, landmarks = facemark.fit(frame, faces=faces)
|
||
|
cv.imshow("Image", frame)
|
||
|
for marks in landmarks:
|
||
|
couleur = (random.randint(0,255),
|
||
|
random.randint(0,255),
|
||
|
random.randint(0,255))
|
||
|
cv.face.drawFacemarks(frame, marks, couleur)
|
||
|
cv.imshow("Image Landmarks", frame)
|
||
|
cv.waitKey()
|