199 lines
7.0 KiB
C++
199 lines
7.0 KiB
C++
|
/*
|
||
|
By downloading, copying, installing or using the software you agree to this
|
||
|
license. If you do not agree to this license, do not download, install,
|
||
|
copy or use the software.
|
||
|
License Agreement
|
||
|
For Open Source Computer Vision Library
|
||
|
(3-clause BSD License)
|
||
|
Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||
|
Third party copyrights are property of their respective owners.
|
||
|
Redistribution and use in source and binary forms, with or without modification,
|
||
|
are permitted provided that the following conditions are met:
|
||
|
* Redistributions of source code must retain the above copyright notice,
|
||
|
this list of conditions and the following disclaimer.
|
||
|
* Redistributions in binary form must reproduce the above copyright notice,
|
||
|
this list of conditions and the following disclaimer in the documentation
|
||
|
and/or other materials provided with the distribution.
|
||
|
* Neither the names of the copyright holders nor the names of the contributors
|
||
|
may be used to endorse or promote products derived from this software
|
||
|
without specific prior written permission.
|
||
|
This software is provided by the copyright holders and contributors "as is" and
|
||
|
any express or implied warranties, including, but not limited to, the implied
|
||
|
warranties of merchantability and fitness for a particular purpose are
|
||
|
disclaimed. In no event shall copyright holders or contributors be liable for
|
||
|
any direct, indirect, incidental, special, exemplary, or consequential damages
|
||
|
(including, but not limited to, procurement of substitute goods or services;
|
||
|
loss of use, data, or profits; or business interruption) however caused
|
||
|
and on any theory of liability, whether in contract, strict liability,
|
||
|
or tort (including negligence or otherwise) arising in any way out of
|
||
|
the use of this software, even if advised of the possibility of such damage.
|
||
|
|
||
|
This file was part of GSoC Project: Facemark API for OpenCV
|
||
|
Final report: https://gist.github.com/kurnianggoro/74de9121e122ad0bd825176751d47ecc
|
||
|
Student: Laksono Kurnianggoro
|
||
|
Mentor: Delia Passalacqua
|
||
|
*/
|
||
|
|
||
|
/*----------------------------------------------
|
||
|
* Usage:
|
||
|
* facemark_lbf_fitting <face_cascade_model> <lbf_model> <video_name>
|
||
|
*
|
||
|
* example:
|
||
|
* facemark_lbf_fitting ../face_cascade.xml ../LBF.model ../video.mp4
|
||
|
*
|
||
|
* note: do not forget to provide the LBF_MODEL and DETECTOR_MODEL
|
||
|
* the model are available at opencv_contrib/modules/face/data/
|
||
|
*--------------------------------------------------*/
|
||
|
|
||
|
#include <stdio.h>
|
||
|
#include <ctime>
|
||
|
#include <iostream>
|
||
|
#include "opencv2/core.hpp"
|
||
|
#include "opencv2/highgui.hpp"
|
||
|
#include "opencv2/imgproc.hpp"
|
||
|
#include "opencv2/face.hpp"
|
||
|
|
||
|
using namespace std;
|
||
|
using namespace cv;
|
||
|
using namespace cv::face;
|
||
|
|
||
|
static bool myDetector(InputArray image, OutputArray ROIs, CascadeClassifier *face_cascade);
|
||
|
static bool parseArguments(int argc, char** argv,
|
||
|
String & cascade, String & model,String & video);
|
||
|
|
||
|
int main(int argc, char** argv ){
|
||
|
String cascade_path,model_path,images_path, video_path;
|
||
|
if(!parseArguments(argc, argv, cascade_path,model_path,video_path))
|
||
|
return -1;
|
||
|
|
||
|
CascadeClassifier face_cascade;
|
||
|
face_cascade.load(cascade_path);
|
||
|
|
||
|
FacemarkLBF::Params params;
|
||
|
params.model_filename = model_path;
|
||
|
params.cascade_face = cascade_path;
|
||
|
|
||
|
Ptr<FacemarkLBF> facemark = FacemarkLBF::create(params);
|
||
|
facemark->setFaceDetector((FN_FaceDetector)myDetector, &face_cascade);
|
||
|
facemark->loadModel(params.model_filename.c_str());
|
||
|
|
||
|
VideoCapture capture(video_path);
|
||
|
Mat frame;
|
||
|
|
||
|
if( !capture.isOpened() ){
|
||
|
printf("Error when reading vide\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
Mat img;
|
||
|
String text;
|
||
|
char buff[255];
|
||
|
double fittime;
|
||
|
int nfaces;
|
||
|
std::vector<Rect> rects,rects_scaled;
|
||
|
std::vector<std::vector<Point2f> > landmarks;
|
||
|
CascadeClassifier cc(params.cascade_face.c_str());
|
||
|
namedWindow( "w", 1);
|
||
|
for( ; ; )
|
||
|
{
|
||
|
capture >> frame;
|
||
|
if(frame.empty())
|
||
|
break;
|
||
|
|
||
|
double __time__ = (double)getTickCount();
|
||
|
|
||
|
float scale = (float)(400.0/frame.cols);
|
||
|
resize(frame, img, Size((int)(frame.cols*scale), (int)(frame.rows*scale)), 0, 0, INTER_LINEAR_EXACT);
|
||
|
|
||
|
facemark->getFaces(img, rects);
|
||
|
rects_scaled.clear();
|
||
|
|
||
|
for(int j=0;j<(int)rects.size();j++){
|
||
|
rects_scaled.push_back(Rect(
|
||
|
(int)(rects[j].x/scale),
|
||
|
(int)(rects[j].y/scale),
|
||
|
(int)(rects[j].width/scale),
|
||
|
(int)(rects[j].height/scale)));
|
||
|
}
|
||
|
rects = rects_scaled;
|
||
|
fittime=0;
|
||
|
nfaces = (int)rects.size();
|
||
|
if(rects.size()>0){
|
||
|
double newtime = (double)getTickCount();
|
||
|
|
||
|
facemark->fit(frame, rects, landmarks);
|
||
|
|
||
|
|
||
|
fittime = ((getTickCount() - newtime)/getTickFrequency());
|
||
|
for(int j=0;j<(int)rects.size();j++){
|
||
|
landmarks[j] = Mat(Mat(landmarks[j]));
|
||
|
drawFacemarks(frame, landmarks[j], Scalar(0,0,255));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
double fps = (getTickFrequency()/(getTickCount() - __time__));
|
||
|
sprintf(buff, "faces: %i %03.2f fps, fit:%03.0f ms",nfaces,fps,fittime*1000);
|
||
|
text = buff;
|
||
|
putText(frame, text, Point(20,40), FONT_HERSHEY_PLAIN , 2.0,Scalar::all(255), 2, 8);
|
||
|
|
||
|
imshow("w", frame);
|
||
|
waitKey(1); // waits to display frame
|
||
|
}
|
||
|
waitKey(0); // key press to close window
|
||
|
}
|
||
|
|
||
|
bool myDetector(InputArray image, OutputArray faces, CascadeClassifier *face_cascade)
|
||
|
{
|
||
|
Mat gray;
|
||
|
|
||
|
if (image.channels() > 1)
|
||
|
cvtColor(image, gray, COLOR_BGR2GRAY);
|
||
|
else
|
||
|
gray = image.getMat().clone();
|
||
|
|
||
|
equalizeHist(gray, gray);
|
||
|
|
||
|
std::vector<Rect> faces_;
|
||
|
face_cascade->detectMultiScale(gray, faces_, 1.4, 2, CASCADE_SCALE_IMAGE, Size(30, 30));
|
||
|
Mat(faces_).copyTo(faces);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool parseArguments(int argc, char** argv,
|
||
|
String & cascade,
|
||
|
String & model,
|
||
|
String & video
|
||
|
){
|
||
|
const String keys =
|
||
|
"{ @c cascade | | (required) path to the cascade model file for the face detector }"
|
||
|
"{ @m model | | (required) path to the trained model }"
|
||
|
"{ @v video | | (required) path input video}"
|
||
|
"{ help h usage ? | | facemark_lbf_fitting -cascade -model -video [-t]\n"
|
||
|
" example: facemark_lbf_fitting ../face_cascade.xml ../LBF.model ../video.mp4}"
|
||
|
;
|
||
|
CommandLineParser parser(argc, argv,keys);
|
||
|
parser.about("hello");
|
||
|
|
||
|
if (parser.has("help")){
|
||
|
parser.printMessage();
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
cascade = String(parser.get<String>("cascade"));
|
||
|
model = String(parser.get<string>("model"));
|
||
|
video = String(parser.get<string>("video"));
|
||
|
|
||
|
|
||
|
if(cascade.empty() || model.empty() || video.empty() ){
|
||
|
std::cerr << "one or more required arguments are not found" << '\n';
|
||
|
cout<<"cascade : "<<cascade.c_str()<<endl;
|
||
|
cout<<"model : "<<model.c_str()<<endl;
|
||
|
cout<<"video : "<<video.c_str()<<endl;
|
||
|
parser.printMessage();
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|