174 lines
6.1 KiB
C++
174 lines
6.1 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "perf_precomp.hpp"
|
||
|
|
||
|
namespace opencv_test { namespace {
|
||
|
|
||
|
///////////////////////////////////////////////////////////////
|
||
|
// HOG
|
||
|
|
||
|
DEF_PARAM_TEST_1(Image, string);
|
||
|
|
||
|
PERF_TEST_P(Image, ObjDetect_HOG,
|
||
|
Values<string>("gpu/hog/road.png",
|
||
|
"gpu/caltech/image_00000009_0.png",
|
||
|
"gpu/caltech/image_00000032_0.png",
|
||
|
"gpu/caltech/image_00000165_0.png",
|
||
|
"gpu/caltech/image_00000261_0.png",
|
||
|
"gpu/caltech/image_00000469_0.png",
|
||
|
"gpu/caltech/image_00000527_0.png",
|
||
|
"gpu/caltech/image_00000574_0.png"))
|
||
|
{
|
||
|
declare.time(300.0);
|
||
|
|
||
|
const cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
|
||
|
ASSERT_FALSE(img.empty());
|
||
|
|
||
|
if (PERF_RUN_CUDA())
|
||
|
{
|
||
|
const cv::cuda::GpuMat d_img(img);
|
||
|
std::vector<cv::Rect> gpu_found_locations;
|
||
|
|
||
|
cv::Ptr<cv::cuda::HOG> d_hog = cv::cuda::HOG::create();
|
||
|
d_hog->setSVMDetector(d_hog->getDefaultPeopleDetector());
|
||
|
|
||
|
TEST_CYCLE() d_hog->detectMultiScale(d_img, gpu_found_locations);
|
||
|
|
||
|
SANITY_CHECK(gpu_found_locations);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
std::vector<cv::Rect> cpu_found_locations;
|
||
|
|
||
|
cv::Ptr<cv::cuda::HOG> d_hog = cv::cuda::HOG::create();
|
||
|
|
||
|
cv::HOGDescriptor hog;
|
||
|
hog.setSVMDetector(d_hog->getDefaultPeopleDetector());
|
||
|
|
||
|
TEST_CYCLE() hog.detectMultiScale(img, cpu_found_locations);
|
||
|
|
||
|
SANITY_CHECK(cpu_found_locations);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
///////////////////////////////////////////////////////////////
|
||
|
// HaarClassifier
|
||
|
|
||
|
typedef pair<string, string> pair_string;
|
||
|
DEF_PARAM_TEST_1(ImageAndCascade, pair_string);
|
||
|
|
||
|
PERF_TEST_P(ImageAndCascade, ObjDetect_HaarClassifier,
|
||
|
Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/perf/haarcascade_frontalface_alt.xml")))
|
||
|
{
|
||
|
const cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
|
||
|
ASSERT_FALSE(img.empty());
|
||
|
|
||
|
if (PERF_RUN_CUDA())
|
||
|
{
|
||
|
cv::Ptr<cv::cuda::CascadeClassifier> d_cascade =
|
||
|
cv::cuda::CascadeClassifier::create(perf::TestBase::getDataPath(GetParam().second));
|
||
|
|
||
|
const cv::cuda::GpuMat d_img(img);
|
||
|
cv::cuda::GpuMat objects_buffer;
|
||
|
|
||
|
TEST_CYCLE() d_cascade->detectMultiScale(d_img, objects_buffer);
|
||
|
|
||
|
std::vector<cv::Rect> gpu_rects;
|
||
|
d_cascade->convert(objects_buffer, gpu_rects);
|
||
|
|
||
|
cv::groupRectangles(gpu_rects, 3, 0.2);
|
||
|
SANITY_CHECK(gpu_rects);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
cv::CascadeClassifier cascade;
|
||
|
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/perf/haarcascade_frontalface_alt.xml")));
|
||
|
|
||
|
std::vector<cv::Rect> cpu_rects;
|
||
|
|
||
|
TEST_CYCLE() cascade.detectMultiScale(img, cpu_rects);
|
||
|
|
||
|
SANITY_CHECK(cpu_rects);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
///////////////////////////////////////////////////////////////
|
||
|
// LBP cascade
|
||
|
|
||
|
PERF_TEST_P(ImageAndCascade, ObjDetect_LBPClassifier,
|
||
|
Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/lbpcascade/lbpcascade_frontalface.xml")))
|
||
|
{
|
||
|
const cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
|
||
|
ASSERT_FALSE(img.empty());
|
||
|
|
||
|
if (PERF_RUN_CUDA())
|
||
|
{
|
||
|
cv::Ptr<cv::cuda::CascadeClassifier> d_cascade =
|
||
|
cv::cuda::CascadeClassifier::create(perf::TestBase::getDataPath(GetParam().second));
|
||
|
|
||
|
const cv::cuda::GpuMat d_img(img);
|
||
|
cv::cuda::GpuMat objects_buffer;
|
||
|
|
||
|
TEST_CYCLE() d_cascade->detectMultiScale(d_img, objects_buffer);
|
||
|
|
||
|
std::vector<cv::Rect> gpu_rects;
|
||
|
d_cascade->convert(objects_buffer, gpu_rects);
|
||
|
|
||
|
cv::groupRectangles(gpu_rects, 3, 0.2);
|
||
|
SANITY_CHECK(gpu_rects);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
cv::CascadeClassifier cascade;
|
||
|
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/lbpcascade/lbpcascade_frontalface.xml")));
|
||
|
|
||
|
std::vector<cv::Rect> cpu_rects;
|
||
|
|
||
|
TEST_CYCLE() cascade.detectMultiScale(img, cpu_rects);
|
||
|
|
||
|
SANITY_CHECK(cpu_rects);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}} // namespace
|