253 lines
9.8 KiB
C++
253 lines
9.8 KiB
C++
|
/*
|
||
|
By downloading, copying, installing or using the software you agree to this
|
||
|
license. If you do not agree to this license, do not download, install,
|
||
|
copy or use the software.
|
||
|
|
||
|
License Agreement
|
||
|
For Open Source Computer Vision Library
|
||
|
(3-clause BSD License)
|
||
|
|
||
|
Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||
|
Third party copyrights are property of their respective owners.
|
||
|
|
||
|
Redistribution and use in source and binary forms, with or without modification,
|
||
|
are permitted provided that the following conditions are met:
|
||
|
|
||
|
* Redistributions of source code must retain the above copyright notice,
|
||
|
this list of conditions and the following disclaimer.
|
||
|
|
||
|
* Redistributions in binary form must reproduce the above copyright notice,
|
||
|
this list of conditions and the following disclaimer in the documentation
|
||
|
and/or other materials provided with the distribution.
|
||
|
|
||
|
* Neither the names of the copyright holders nor the names of the contributors
|
||
|
may be used to endorse or promote products derived from this software
|
||
|
without specific prior written permission.
|
||
|
|
||
|
This software is provided by the copyright holders and contributors "as is" and
|
||
|
any express or implied warranties, including, but not limited to, the implied
|
||
|
warranties of merchantability and fitness for a particular purpose are
|
||
|
disclaimed. In no event shall copyright holders or contributors be liable for
|
||
|
any direct, indirect, incidental, special, exemplary, or consequential damages
|
||
|
(including, but not limited to, procurement of substitute goods or services;
|
||
|
loss of use, data, or profits; or business interruption) however caused
|
||
|
and on any theory of liability, whether in contract, strict liability,
|
||
|
or tort (including negligence or otherwise) arising in any way out of
|
||
|
the use of this software, even if advised of the possibility of such damage.
|
||
|
*/
|
||
|
|
||
|
|
||
|
#include <opencv2/highgui.hpp>
|
||
|
#include <opencv2/aruco/charuco.hpp>
|
||
|
#include <vector>
|
||
|
#include <iostream>
|
||
|
|
||
|
using namespace std;
|
||
|
using namespace cv;
|
||
|
|
||
|
|
||
|
namespace {
|
||
|
const char* about = "Detect ChArUco markers";
|
||
|
const char* keys =
|
||
|
"{sl | | Square side length (in meters) }"
|
||
|
"{ml | | Marker side length (in meters) }"
|
||
|
"{d | | dictionary: DICT_4X4_50=0, DICT_4X4_100=1, DICT_4X4_250=2,"
|
||
|
"DICT_4X4_1000=3, DICT_5X5_50=4, DICT_5X5_100=5, DICT_5X5_250=6, DICT_5X5_1000=7, "
|
||
|
"DICT_6X6_50=8, DICT_6X6_100=9, DICT_6X6_250=10, DICT_6X6_1000=11, DICT_7X7_50=12,"
|
||
|
"DICT_7X7_100=13, DICT_7X7_250=14, DICT_7X7_1000=15, DICT_ARUCO_ORIGINAL = 16}"
|
||
|
"{c | | Output file with calibrated camera parameters }"
|
||
|
"{as | | Automatic scale. The provided number is multiplied by the last"
|
||
|
"diamond id becoming an indicator of the square length. In this case, the -sl and "
|
||
|
"-ml are only used to know the relative length relation between squares and markers }"
|
||
|
"{v | | Input from video file, if ommited, input comes from camera }"
|
||
|
"{ci | 0 | Camera id if input doesnt come from video (-v) }"
|
||
|
"{dp | | File of marker detector parameters }"
|
||
|
"{rs | | Apply refind strategy }"
|
||
|
"{r | | show rejected candidates too }";
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
*/
|
||
|
static bool readCameraParameters(string filename, Mat &camMatrix, Mat &distCoeffs) {
|
||
|
FileStorage fs(filename, FileStorage::READ);
|
||
|
if(!fs.isOpened())
|
||
|
return false;
|
||
|
fs["camera_matrix"] >> camMatrix;
|
||
|
fs["distortion_coefficients"] >> distCoeffs;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
*/
|
||
|
static bool readDetectorParameters(string filename, Ptr<aruco::DetectorParameters> ¶ms) {
|
||
|
FileStorage fs(filename, FileStorage::READ);
|
||
|
if(!fs.isOpened())
|
||
|
return false;
|
||
|
fs["adaptiveThreshWinSizeMin"] >> params->adaptiveThreshWinSizeMin;
|
||
|
fs["adaptiveThreshWinSizeMax"] >> params->adaptiveThreshWinSizeMax;
|
||
|
fs["adaptiveThreshWinSizeStep"] >> params->adaptiveThreshWinSizeStep;
|
||
|
fs["adaptiveThreshConstant"] >> params->adaptiveThreshConstant;
|
||
|
fs["minMarkerPerimeterRate"] >> params->minMarkerPerimeterRate;
|
||
|
fs["maxMarkerPerimeterRate"] >> params->maxMarkerPerimeterRate;
|
||
|
fs["polygonalApproxAccuracyRate"] >> params->polygonalApproxAccuracyRate;
|
||
|
fs["minCornerDistanceRate"] >> params->minCornerDistanceRate;
|
||
|
fs["minDistanceToBorder"] >> params->minDistanceToBorder;
|
||
|
fs["minMarkerDistanceRate"] >> params->minMarkerDistanceRate;
|
||
|
fs["cornerRefinementMethod"] >> params->cornerRefinementMethod;
|
||
|
fs["cornerRefinementWinSize"] >> params->cornerRefinementWinSize;
|
||
|
fs["cornerRefinementMaxIterations"] >> params->cornerRefinementMaxIterations;
|
||
|
fs["cornerRefinementMinAccuracy"] >> params->cornerRefinementMinAccuracy;
|
||
|
fs["markerBorderBits"] >> params->markerBorderBits;
|
||
|
fs["perspectiveRemovePixelPerCell"] >> params->perspectiveRemovePixelPerCell;
|
||
|
fs["perspectiveRemoveIgnoredMarginPerCell"] >> params->perspectiveRemoveIgnoredMarginPerCell;
|
||
|
fs["maxErroneousBitsInBorderRate"] >> params->maxErroneousBitsInBorderRate;
|
||
|
fs["minOtsuStdDev"] >> params->minOtsuStdDev;
|
||
|
fs["errorCorrectionRate"] >> params->errorCorrectionRate;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
*/
|
||
|
int main(int argc, char *argv[]) {
|
||
|
CommandLineParser parser(argc, argv, keys);
|
||
|
parser.about(about);
|
||
|
|
||
|
if(argc < 4) {
|
||
|
parser.printMessage();
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
float squareLength = parser.get<float>("sl");
|
||
|
float markerLength = parser.get<float>("ml");
|
||
|
int dictionaryId = parser.get<int>("d");
|
||
|
bool showRejected = parser.has("r");
|
||
|
bool estimatePose = parser.has("c");
|
||
|
bool autoScale = parser.has("as");
|
||
|
float autoScaleFactor = autoScale ? parser.get<float>("as") : 1.f;
|
||
|
|
||
|
Ptr<aruco::DetectorParameters> detectorParams = aruco::DetectorParameters::create();
|
||
|
if(parser.has("dp")) {
|
||
|
bool readOk = readDetectorParameters(parser.get<string>("dp"), detectorParams);
|
||
|
if(!readOk) {
|
||
|
cerr << "Invalid detector parameters file" << endl;
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int camId = parser.get<int>("ci");
|
||
|
String video;
|
||
|
|
||
|
if(parser.has("v")) {
|
||
|
video = parser.get<String>("v");
|
||
|
}
|
||
|
|
||
|
if(!parser.check()) {
|
||
|
parser.printErrors();
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
Ptr<aruco::Dictionary> dictionary =
|
||
|
aruco::getPredefinedDictionary(aruco::PREDEFINED_DICTIONARY_NAME(dictionaryId));
|
||
|
|
||
|
Mat camMatrix, distCoeffs;
|
||
|
if(estimatePose) {
|
||
|
bool readOk = readCameraParameters(parser.get<string>("c"), camMatrix, distCoeffs);
|
||
|
if(!readOk) {
|
||
|
cerr << "Invalid camera file" << endl;
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
VideoCapture inputVideo;
|
||
|
int waitTime;
|
||
|
if(!video.empty()) {
|
||
|
inputVideo.open(video);
|
||
|
waitTime = 0;
|
||
|
} else {
|
||
|
inputVideo.open(camId);
|
||
|
waitTime = 10;
|
||
|
}
|
||
|
|
||
|
double totalTime = 0;
|
||
|
int totalIterations = 0;
|
||
|
|
||
|
while(inputVideo.grab()) {
|
||
|
Mat image, imageCopy;
|
||
|
inputVideo.retrieve(image);
|
||
|
|
||
|
double tick = (double)getTickCount();
|
||
|
|
||
|
vector< int > markerIds;
|
||
|
vector< Vec4i > diamondIds;
|
||
|
vector< vector< Point2f > > markerCorners, rejectedMarkers, diamondCorners;
|
||
|
vector< Vec3d > rvecs, tvecs;
|
||
|
|
||
|
// detect markers
|
||
|
aruco::detectMarkers(image, dictionary, markerCorners, markerIds, detectorParams,
|
||
|
rejectedMarkers);
|
||
|
|
||
|
// detect diamonds
|
||
|
if(markerIds.size() > 0)
|
||
|
aruco::detectCharucoDiamond(image, markerCorners, markerIds,
|
||
|
squareLength / markerLength, diamondCorners, diamondIds,
|
||
|
camMatrix, distCoeffs);
|
||
|
|
||
|
// estimate diamond pose
|
||
|
if(estimatePose && diamondIds.size() > 0) {
|
||
|
if(!autoScale) {
|
||
|
aruco::estimatePoseSingleMarkers(diamondCorners, squareLength, camMatrix,
|
||
|
distCoeffs, rvecs, tvecs);
|
||
|
} else {
|
||
|
// if autoscale, extract square size from last diamond id
|
||
|
for(unsigned int i = 0; i < diamondCorners.size(); i++) {
|
||
|
float autoSquareLength = autoScaleFactor * float(diamondIds[i].val[3]);
|
||
|
vector< vector< Point2f > > currentCorners;
|
||
|
vector< Vec3d > currentRvec, currentTvec;
|
||
|
currentCorners.push_back(diamondCorners[i]);
|
||
|
aruco::estimatePoseSingleMarkers(currentCorners, autoSquareLength, camMatrix,
|
||
|
distCoeffs, currentRvec, currentTvec);
|
||
|
rvecs.push_back(currentRvec[0]);
|
||
|
tvecs.push_back(currentTvec[0]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
double currentTime = ((double)getTickCount() - tick) / getTickFrequency();
|
||
|
totalTime += currentTime;
|
||
|
totalIterations++;
|
||
|
if(totalIterations % 30 == 0) {
|
||
|
cout << "Detection Time = " << currentTime * 1000 << " ms "
|
||
|
<< "(Mean = " << 1000 * totalTime / double(totalIterations) << " ms)" << endl;
|
||
|
}
|
||
|
|
||
|
|
||
|
// draw results
|
||
|
image.copyTo(imageCopy);
|
||
|
if(markerIds.size() > 0)
|
||
|
aruco::drawDetectedMarkers(imageCopy, markerCorners);
|
||
|
|
||
|
|
||
|
if(showRejected && rejectedMarkers.size() > 0)
|
||
|
aruco::drawDetectedMarkers(imageCopy, rejectedMarkers, noArray(), Scalar(100, 0, 255));
|
||
|
|
||
|
if(diamondIds.size() > 0) {
|
||
|
aruco::drawDetectedDiamonds(imageCopy, diamondCorners, diamondIds);
|
||
|
|
||
|
if(estimatePose) {
|
||
|
for(unsigned int i = 0; i < diamondIds.size(); i++)
|
||
|
aruco::drawAxis(imageCopy, camMatrix, distCoeffs, rvecs[i], tvecs[i],
|
||
|
squareLength * 0.5f);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
imshow("out", imageCopy);
|
||
|
char key = (char)waitKey(waitTime);
|
||
|
if(key == 27) break;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|