OpenCV_4.2.0/opencv-4.2.0/modules/gapi/test/gapi_basic_hetero_tests.cpp

313 lines
8.9 KiB
C++
Raw Normal View History

2024-07-25 16:47:56 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#include "test_precomp.hpp"
#include "gapi_mock_kernels.hpp"
#include <opencv2/gapi/fluid/gfluidkernel.hpp>
namespace opencv_test
{
namespace
{
GAPI_OCV_KERNEL(OCVFoo, I::Foo)
{
static void run(const cv::Mat &in, cv::Mat &out)
{
out = in + 2;
}
};
GAPI_OCV_KERNEL(OCVBar, I::Bar)
{
static void run(const cv::Mat &a, const cv::Mat &b, cv::Mat &out)
{
out = 4*(a + b);
}
};
void FluidFooRow(const uint8_t* in, uint8_t* out, int length)
{
for (int i = 0; i < length; i++)
{
out[i] = in[i] + 3;
}
}
void FluidBarRow(const uint8_t* in1, const uint8_t* in2, uint8_t* out, int length)
{
for (int i = 0; i < length; i++)
{
out[i] = 3*(in1[i] + in2[i]);
}
}
GAPI_FLUID_KERNEL(FFoo, I::Foo, false)
{
static const int Window = 1;
static void run(const cv::gapi::fluid::View &in,
cv::gapi::fluid::Buffer &out)
{
FluidFooRow(in.InLineB(0), out.OutLineB(), in.length());
}
};
GAPI_FLUID_KERNEL(FBar, I::Bar, false)
{
static const int Window = 1;
static void run(const cv::gapi::fluid::View &in1,
const cv::gapi::fluid::View &in2,
cv::gapi::fluid::Buffer &out)
{
FluidBarRow(in1.InLineB(0), in2.InLineB(0), out.OutLineB(), in1.length());
}
};
G_TYPED_KERNEL(FluidFooI, <cv::GMat(cv::GMat)>, "test.kernels.fluid_foo")
{
static cv::GMatDesc outMeta(const cv::GMatDesc &in) { return in; }
};
G_TYPED_KERNEL(FluidBarI, <cv::GMat(cv::GMat,cv::GMat)>, "test.kernels.fluid_bar")
{
static cv::GMatDesc outMeta(const cv::GMatDesc &in, const cv::GMatDesc &) { return in; }
};
GAPI_FLUID_KERNEL(FluidFoo, FluidFooI, false)
{
static const int Window = 1;
static void run(const cv::gapi::fluid::View &in,
cv::gapi::fluid::Buffer &out)
{
FluidFooRow(in.InLineB(0), out.OutLineB(), in.length());
}
};
GAPI_FLUID_KERNEL(FluidBar, FluidBarI, false)
{
static const int Window = 1;
static void run(const cv::gapi::fluid::View &in1,
const cv::gapi::fluid::View &in2,
cv::gapi::fluid::Buffer &out)
{
FluidBarRow(in1.InLineB(0), in2.InLineB(0), out.OutLineB(), in1.length());
}
};
GAPI_FLUID_KERNEL(FluidFoo2lpi, FluidFooI, false)
{
static const int Window = 1;
static const int LPI = 2;
static void run(const cv::gapi::fluid::View &in,
cv::gapi::fluid::Buffer &out)
{
for (int l = 0; l < out.lpi(); l++)
{
FluidFooRow(in.InLineB(l), out.OutLineB(l), in.length());
}
}
};
cv::Mat ocvFoo(const cv::Mat &in)
{
cv::Mat out;
OCVFoo::run(in, out);
return out;
}
cv::Mat ocvBar(const cv::Mat &in1, const cv::Mat &in2)
{
cv::Mat out;
OCVBar::run(in1, in2, out);
return out;
}
cv::Mat fluidFoo(const cv::Mat &in)
{
cv::Mat out(in.rows, in.cols, in.type());
for (int y = 0; y < in.rows; y++)
{
FluidFooRow(in.ptr(y), out.ptr(y), in.cols);
}
return out;
}
cv::Mat fluidBar(const cv::Mat &in1, const cv::Mat &in2)
{
cv::Mat out(in1.rows, in1.cols, in1.type());
for (int y = 0; y < in1.rows; y++)
{
FluidBarRow(in1.ptr(y), in2.ptr(y), out.ptr(y), in1.cols);
}
return out;
}
} // anonymous namespace
struct GAPIHeteroTest: public ::testing::Test
{
cv::GComputation m_comp;
cv::gapi::GKernelPackage m_ocv_kernels;
cv::gapi::GKernelPackage m_fluid_kernels;
cv::gapi::GKernelPackage m_hetero_kernels;
cv::Mat m_in_mat;
cv::Mat m_out_mat;
GAPIHeteroTest();
};
GAPIHeteroTest::GAPIHeteroTest()
: m_comp([](){
cv::GMat in;
cv::GMat out = I::Bar::on(I::Foo::on(in),
I::Foo::on(in));
return cv::GComputation(in, out);
})
, m_ocv_kernels(cv::gapi::kernels<OCVFoo, OCVBar>())
, m_fluid_kernels(cv::gapi::kernels<FFoo, FBar>())
, m_hetero_kernels(cv::gapi::kernels<OCVFoo, FBar>())
, m_in_mat(cv::Mat::eye(cv::Size(64, 64), CV_8UC1))
{
}
TEST_F(GAPIHeteroTest, TestOCV)
{
EXPECT_TRUE(cv::gapi::cpu::backend() == m_ocv_kernels.lookup<I::Foo>());
EXPECT_TRUE(cv::gapi::cpu::backend() == m_ocv_kernels.lookup<I::Bar>());
cv::Mat ref = ocvBar(ocvFoo(m_in_mat), ocvFoo(m_in_mat));
EXPECT_NO_THROW(m_comp.apply(m_in_mat, m_out_mat, cv::compile_args(m_ocv_kernels)));
EXPECT_EQ(0, cv::countNonZero(ref != m_out_mat));
}
TEST_F(GAPIHeteroTest, TestFluid)
{
EXPECT_TRUE(cv::gapi::fluid::backend() == m_fluid_kernels.lookup<I::Foo>());
EXPECT_TRUE(cv::gapi::fluid::backend() == m_fluid_kernels.lookup<I::Bar>());
cv::Mat ref = fluidBar(fluidFoo(m_in_mat), fluidFoo(m_in_mat));
EXPECT_NO_THROW(m_comp.apply(m_in_mat, m_out_mat, cv::compile_args(m_fluid_kernels)));
EXPECT_EQ(0, cv::countNonZero(ref != m_out_mat));
}
TEST_F(GAPIHeteroTest, TestBoth)
{
EXPECT_TRUE(cv::gapi::cpu::backend() == m_hetero_kernels.lookup<I::Foo>());
EXPECT_TRUE(cv::gapi::fluid::backend() == m_hetero_kernels.lookup<I::Bar>());
cv::Mat ref = fluidBar(ocvFoo(m_in_mat), ocvFoo(m_in_mat));
EXPECT_NO_THROW(m_comp.apply(m_in_mat, m_out_mat, cv::compile_args(m_hetero_kernels)));
EXPECT_EQ(0, cv::countNonZero(ref != m_out_mat));
}
struct GAPIBigHeteroTest : public ::testing::TestWithParam<std::array<int, 9>>
{
cv::GComputation m_comp;
cv::gapi::GKernelPackage m_kernels;
cv::Mat m_in_mat;
cv::Mat m_out_mat1;
cv::Mat m_out_mat2;
cv::Mat m_ref_mat1;
cv::Mat m_ref_mat2;
GAPIBigHeteroTest();
};
// Foo7
// .-> Foo2 -> Foo3 -<
// Foo0 -> Foo1 Bar -> Foo6
// `-> Foo4 -> Foo5 -`
GAPIBigHeteroTest::GAPIBigHeteroTest()
: m_comp([&](){
auto flags = GetParam();
std::array<std::function<cv::GMat(cv::GMat)>, 8> foos;
for (int i = 0; i < 8; i++)
{
foos[i] = flags[i] ? &I::Foo::on : &FluidFooI::on;
}
auto bar = flags[8] ? &I::Bar::on : &FluidBarI::on;
cv::GMat in;
auto foo1Out = foos[1](foos[0](in));
auto foo3Out = foos[3](foos[2](foo1Out));
auto foo6Out = foos[6](bar(foo3Out,
foos[5](foos[4](foo1Out))));
auto foo7Out = foos[7](foo3Out);
return cv::GComputation(GIn(in), GOut(foo6Out, foo7Out));
})
, m_kernels(cv::gapi::kernels<OCVFoo, OCVBar, FluidFoo, FluidBar>())
, m_in_mat(cv::Mat::eye(cv::Size(64, 64), CV_8UC1))
{
auto flags = GetParam();
std::array<std::function<cv::Mat(cv::Mat)>, 8> foos;
for (int i = 0; i < 8; i++)
{
foos[i] = flags[i] ? ocvFoo : fluidFoo;
}
auto bar = flags[8] ? ocvBar : fluidBar;
cv::Mat foo1OutMat = foos[1](foos[0](m_in_mat));
cv::Mat foo3OutMat = foos[3](foos[2](foo1OutMat));
m_ref_mat1 = foos[6](bar(foo3OutMat,
foos[5](foos[4](foo1OutMat))));
m_ref_mat2 = foos[7](foo3OutMat);
}
TEST_P(GAPIBigHeteroTest, Test)
{
EXPECT_NO_THROW(m_comp.apply(gin(m_in_mat), gout(m_out_mat1, m_out_mat2), cv::compile_args(m_kernels)));
EXPECT_EQ(0, cv::countNonZero(m_ref_mat1 != m_out_mat1));
EXPECT_EQ(0, cv::countNonZero(m_ref_mat2 != m_out_mat2));
}
static auto configurations = []()
{
// Fill all possible configurations
// from 000000000 to 111111111
std::array<std::array<int, 9>, 512> arr;
for (auto n = 0; n < 512; n++)
{
for (auto i = 0; i < 9; i++)
{
arr[n][i] = (n >> (8 - i)) & 1;
}
}
return arr;
}();
INSTANTIATE_TEST_CASE_P(GAPIBigHeteroTest, GAPIBigHeteroTest,
::testing::ValuesIn(configurations));
TEST(GAPIHeteroTestLPI, Test)
{
cv::GMat in;
auto mid = FluidFooI::on(in);
auto out = FluidFooI::on(mid);
cv::gapi::island("isl0", GIn(in), GOut(mid));
cv::gapi::island("isl1", GIn(mid), GOut(out));
cv::GComputation c(in, out);
cv::Mat in_mat = cv::Mat::eye(cv::Size(64, 64), CV_8UC1);
cv::Mat out_mat;
EXPECT_NO_THROW(c.apply(in_mat, out_mat, cv::compile_args(cv::gapi::kernels<FluidFoo2lpi>())));
cv::Mat ref = fluidFoo(fluidFoo(in_mat));
EXPECT_EQ(0, cv::countNonZero(ref != out_mat));
}
} // namespace opencv_test