152 lines
4.6 KiB
C++
152 lines
4.6 KiB
C++
|
/*
|
||
|
By downloading, copying, installing or using the software you agree to this
|
||
|
license. If you do not agree to this license, do not download, install,
|
||
|
copy or use the software.
|
||
|
License Agreement
|
||
|
For Open Source Computer Vision Library
|
||
|
(3-clause BSD License)
|
||
|
Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||
|
Third party copyrights are property of their respective owners.
|
||
|
Redistribution and use in source and binary forms, with or without modification,
|
||
|
are permitted provided that the following conditions are met:
|
||
|
* Redistributions of source code must retain the above copyright notice,
|
||
|
this list of conditions and the following disclaimer.
|
||
|
* Redistributions in binary form must reproduce the above copyright notice,
|
||
|
this list of conditions and the following disclaimer in the documentation
|
||
|
and/or other materials provided with the distribution.
|
||
|
* Neither the names of the copyright holders nor the names of the contributors
|
||
|
may be used to endorse or promote products derived from this software
|
||
|
without specific prior written permission.
|
||
|
This software is provided by the copyright holders and contributors "as is" and
|
||
|
any express or implied warranties, including, but not limited to, the implied
|
||
|
warranties of merchantability and fitness for a particular purpose are
|
||
|
disclaimed. In no event shall copyright holders or contributors be liable for
|
||
|
any direct, indirect, incidental, special, exemplary, or consequential damages
|
||
|
(including, but not limited to, procurement of substitute goods or services;
|
||
|
loss of use, data, or profits; or business interruption) however caused
|
||
|
and on any theory of liability, whether in contract, strict liability,
|
||
|
or tort (including negligence or otherwise) arising in any way out of
|
||
|
the use of this software, even if advised of the possibility of such damage.
|
||
|
*/
|
||
|
|
||
|
|
||
|
#include "opencv2/ximgproc/segmentation.hpp"
|
||
|
#include "opencv2/highgui.hpp"
|
||
|
#include "opencv2/core.hpp"
|
||
|
#include "opencv2/imgproc.hpp"
|
||
|
#include <iostream>
|
||
|
|
||
|
using namespace cv;
|
||
|
using namespace cv::ximgproc::segmentation;
|
||
|
|
||
|
Scalar hsv_to_rgb(Scalar);
|
||
|
Scalar color_mapping(int);
|
||
|
|
||
|
static void help() {
|
||
|
std::cout << std::endl <<
|
||
|
"A program demonstrating the use and capabilities of a particular graph based image" << std::endl <<
|
||
|
"segmentation algorithm described in P. Felzenszwalb, D. Huttenlocher," << std::endl <<
|
||
|
" \"Efficient Graph-Based Image Segmentation\"" << std::endl <<
|
||
|
"International Journal of Computer Vision, Vol. 59, No. 2, September 2004" << std::endl << std::endl <<
|
||
|
"Usage:" << std::endl <<
|
||
|
"./graphsegmentation_demo input_image output_image [simga=0.5] [k=300] [min_size=100]" << std::endl;
|
||
|
}
|
||
|
|
||
|
Scalar hsv_to_rgb(Scalar c) {
|
||
|
Mat in(1, 1, CV_32FC3);
|
||
|
Mat out(1, 1, CV_32FC3);
|
||
|
|
||
|
float * p = in.ptr<float>(0);
|
||
|
|
||
|
p[0] = (float)c[0] * 360.0f;
|
||
|
p[1] = (float)c[1];
|
||
|
p[2] = (float)c[2];
|
||
|
|
||
|
cvtColor(in, out, COLOR_HSV2RGB);
|
||
|
|
||
|
Scalar t;
|
||
|
|
||
|
Vec3f p2 = out.at<Vec3f>(0, 0);
|
||
|
|
||
|
t[0] = (int)(p2[0] * 255);
|
||
|
t[1] = (int)(p2[1] * 255);
|
||
|
t[2] = (int)(p2[2] * 255);
|
||
|
|
||
|
return t;
|
||
|
|
||
|
}
|
||
|
|
||
|
Scalar color_mapping(int segment_id) {
|
||
|
|
||
|
double base = (double)(segment_id) * 0.618033988749895 + 0.24443434;
|
||
|
|
||
|
return hsv_to_rgb(Scalar(fmod(base, 1.2), 0.95, 0.80));
|
||
|
|
||
|
}
|
||
|
|
||
|
int main(int argc, char** argv) {
|
||
|
|
||
|
if (argc < 2 || argc > 6) {
|
||
|
help();
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
Ptr<GraphSegmentation> gs = createGraphSegmentation();
|
||
|
|
||
|
if (argc > 3)
|
||
|
gs->setSigma(atof(argv[3]));
|
||
|
|
||
|
if (argc > 4)
|
||
|
gs->setK((float)atoi(argv[4]));
|
||
|
|
||
|
if (argc > 5)
|
||
|
gs->setMinSize(atoi(argv[5]));
|
||
|
|
||
|
if (!gs) {
|
||
|
std::cerr << "Failed to create GraphSegmentation Algorithm." << std::endl;
|
||
|
return -2;
|
||
|
}
|
||
|
|
||
|
Mat input, output, output_image;
|
||
|
|
||
|
input = imread(argv[1]);
|
||
|
|
||
|
if (!input.data) {
|
||
|
std::cerr << "Failed to load input image" << std::endl;
|
||
|
return -3;
|
||
|
}
|
||
|
|
||
|
gs->processImage(input, output);
|
||
|
|
||
|
double min, max;
|
||
|
minMaxLoc(output, &min, &max);
|
||
|
|
||
|
int nb_segs = (int)max + 1;
|
||
|
|
||
|
std::cout << nb_segs << " segments" << std::endl;
|
||
|
|
||
|
output_image = Mat::zeros(output.rows, output.cols, CV_8UC3);
|
||
|
|
||
|
uint* p;
|
||
|
uchar* p2;
|
||
|
|
||
|
for (int i = 0; i < output.rows; i++) {
|
||
|
|
||
|
p = output.ptr<uint>(i);
|
||
|
p2 = output_image.ptr<uchar>(i);
|
||
|
|
||
|
for (int j = 0; j < output.cols; j++) {
|
||
|
Scalar color = color_mapping(p[j]);
|
||
|
p2[j*3] = (uchar)color[0];
|
||
|
p2[j*3 + 1] = (uchar)color[1];
|
||
|
p2[j*3 + 2] = (uchar)color[2];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
imwrite(argv[2], output_image);
|
||
|
|
||
|
std::cout << "Image written to " << argv[2] << std::endl;
|
||
|
|
||
|
return 0;
|
||
|
}
|