437 lines
14 KiB
C++
437 lines
14 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2015, OpenCV Foundation, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "test_precomp.hpp"
|
||
|
#include "opencv2/tracking/kalman_filters.hpp"
|
||
|
|
||
|
namespace opencv_test { namespace {
|
||
|
using namespace cv::tracking;
|
||
|
|
||
|
// In this two tests Unscented Kalman Filter are applied to the dynamic system from example "The reentry problem" from
|
||
|
// "A New Extension of the Kalman Filter to Nonlinear Systems" by Simon J. Julier and Jeffrey K. Uhlmann.
|
||
|
class BallisticModel: public UkfSystemModel
|
||
|
{
|
||
|
static const double step;
|
||
|
|
||
|
Mat diff_eq(const Mat& x)
|
||
|
{
|
||
|
double x1 = x.at<double>(0, 0);
|
||
|
double x2 = x.at<double>(1, 0);
|
||
|
double x3 = x.at<double>(2, 0);
|
||
|
double x4 = x.at<double>(3, 0);
|
||
|
double x5 = x.at<double>(4, 0);
|
||
|
|
||
|
const double h0 = 9.3;
|
||
|
const double beta0 = 0.59783;
|
||
|
const double Gm = 3.9860044 * 1e5;
|
||
|
const double r_e = 6374;
|
||
|
|
||
|
const double r = sqrt( x1*x1 + x2*x2 );
|
||
|
const double v = sqrt( x3*x3 + x4*x4 );
|
||
|
const double d = - beta0 * exp( ( r_e - r )/h0 ) * exp( x5 ) * v;
|
||
|
const double g = - Gm / (r*r*r);
|
||
|
|
||
|
Mat fx = x.clone();
|
||
|
|
||
|
fx.at<double>(0, 0) = x3;
|
||
|
fx.at<double>(1, 0) = x4;
|
||
|
fx.at<double>(2, 0) = d * x3 + g * x1;
|
||
|
fx.at<double>(3, 0) = d * x4 + g * x2;
|
||
|
fx.at<double>(4, 0) = 0.0;
|
||
|
|
||
|
return fx;
|
||
|
}
|
||
|
public:
|
||
|
void stateConversionFunction(const Mat& x_k, const Mat& u_k, const Mat& v_k, Mat& x_kplus1)
|
||
|
{
|
||
|
Mat v = sqrt(step) * v_k.clone();
|
||
|
v.at<double>(0, 0) = 0.0;
|
||
|
v.at<double>(1, 0) = 0.0;
|
||
|
|
||
|
Mat k1 = diff_eq( x_k ) + v;
|
||
|
Mat tmp = x_k + step*0.5*k1;
|
||
|
Mat k2 = diff_eq( tmp ) + v;
|
||
|
tmp = x_k + step*0.5*k2;
|
||
|
Mat k3 = diff_eq( tmp ) + v;
|
||
|
tmp = x_k + step*k3;
|
||
|
Mat k4 = diff_eq( tmp ) + v;
|
||
|
|
||
|
x_kplus1 = x_k + (1.0/6.0)*step*( k1 + 2.0*k2 + 2.0*k3 + k4 ) + u_k;
|
||
|
}
|
||
|
|
||
|
void measurementFunction(const Mat& x_k, const Mat& n_k, Mat& z_k)
|
||
|
{
|
||
|
double x1 = x_k.at<double>(0, 0);
|
||
|
double x2 = x_k.at<double>(1, 0);
|
||
|
double x1_r = 6374.0;
|
||
|
double x2_r = 0.0;
|
||
|
|
||
|
double R = sqrt( pow( x1 - x1_r, 2 ) + pow( x2 - x2_r, 2 ) );
|
||
|
double Phi = atan( (x2 - x2_r)/(x1 - x1_r) );
|
||
|
|
||
|
R += n_k.at<double>(0, 0);
|
||
|
Phi += n_k.at<double>(1, 0);
|
||
|
|
||
|
z_k.at<double>(0, 0) = R;
|
||
|
z_k.at<double>(1, 0) = Phi;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
const double BallisticModel::step = 0.05;
|
||
|
|
||
|
TEST(UKF, br_landing_point)
|
||
|
{
|
||
|
const double abs_error = 0.1;
|
||
|
|
||
|
const int nIterations = 4000; // number of iterations before landing
|
||
|
const double landing_coordinate = 2.5; // the expected landing coordinate
|
||
|
|
||
|
const double alpha = 1;
|
||
|
const double beta = 2.0;
|
||
|
const double kappa = -2.0;
|
||
|
|
||
|
int MP = 2;
|
||
|
int DP = 5;
|
||
|
int CP = 0;
|
||
|
int type = CV_64F;
|
||
|
|
||
|
Mat processNoiseCov = Mat::zeros( DP, DP, type );
|
||
|
processNoiseCov.at<double>(0, 0) = 1e-14;
|
||
|
processNoiseCov.at<double>(1, 1) = 1e-14;
|
||
|
processNoiseCov.at<double>(2, 2) = 2.4065 * 1e-5;
|
||
|
processNoiseCov.at<double>(3, 3) = 2.4065 * 1e-5;
|
||
|
processNoiseCov.at<double>(4, 4) = 1e-6;
|
||
|
Mat processNoiseCovSqrt = Mat::zeros( DP, DP, type );
|
||
|
sqrt( processNoiseCov, processNoiseCovSqrt );
|
||
|
|
||
|
Mat measurementNoiseCov = Mat::zeros( MP, MP, type );
|
||
|
measurementNoiseCov.at<double>(0, 0) = 1e-3*1e-3;
|
||
|
measurementNoiseCov.at<double>(1, 1) = 0.13*0.13;
|
||
|
Mat measurementNoiseCovSqrt = Mat::zeros( MP, MP, type );
|
||
|
sqrt( measurementNoiseCov, measurementNoiseCovSqrt );
|
||
|
|
||
|
RNG rng( 117 );
|
||
|
|
||
|
Mat state( DP, 1, type );
|
||
|
state.at<double>(0, 0) = 6500.4;
|
||
|
state.at<double>(1, 0) = 349.14;
|
||
|
state.at<double>(2, 0) = -1.8093;
|
||
|
state.at<double>(3, 0) = -6.7967;
|
||
|
state.at<double>(4, 0) = 0.6932;
|
||
|
|
||
|
Mat initState = state.clone();
|
||
|
initState.at<double>(4, 0) = 0.0;
|
||
|
|
||
|
Mat P = 1e-6 * Mat::eye( DP, DP, type );
|
||
|
P.at<double>(4, 4) = 1.0;
|
||
|
|
||
|
Mat measurement( MP, 1, type );
|
||
|
|
||
|
Mat q( DP, 1, type );
|
||
|
Mat r( MP, 1, type );
|
||
|
|
||
|
Ptr<BallisticModel> model( new BallisticModel() );
|
||
|
UnscentedKalmanFilterParams params( DP, MP, CP, 0, 0, model );
|
||
|
|
||
|
params.stateInit = initState.clone();
|
||
|
params.errorCovInit = P.clone();
|
||
|
params.measurementNoiseCov = measurementNoiseCov.clone();
|
||
|
params.processNoiseCov = processNoiseCov.clone();
|
||
|
|
||
|
params.alpha = alpha;
|
||
|
params.beta = beta;
|
||
|
params.k = kappa;
|
||
|
|
||
|
Ptr<UnscentedKalmanFilter> uncsentedKalmanFilter = createUnscentedKalmanFilter(params);
|
||
|
|
||
|
Mat correctStateUKF( DP, 1, type );
|
||
|
Mat u = Mat::zeros( DP, 1, type );
|
||
|
|
||
|
for (int i = 0; i<nIterations; i++)
|
||
|
{
|
||
|
rng.fill( q, RNG::NORMAL, Scalar::all(0), Scalar::all(1) );
|
||
|
q = processNoiseCovSqrt*q;
|
||
|
|
||
|
rng.fill( r, RNG::NORMAL, Scalar::all(0), Scalar::all(1) );
|
||
|
r = measurementNoiseCovSqrt*r;
|
||
|
|
||
|
model->stateConversionFunction(state, u, q, state);
|
||
|
model->measurementFunction(state, r, measurement);
|
||
|
|
||
|
uncsentedKalmanFilter->predict();
|
||
|
correctStateUKF = uncsentedKalmanFilter->correct( measurement );
|
||
|
}
|
||
|
|
||
|
double landing_y = correctStateUKF.at<double>(1, 0);
|
||
|
ASSERT_NEAR(landing_coordinate, landing_y, abs_error);
|
||
|
}
|
||
|
|
||
|
TEST(UKF, DISABLED_br_mean_squared_error)
|
||
|
{
|
||
|
const double velocity_treshold = 0.09;
|
||
|
const double state_treshold = 0.9;
|
||
|
|
||
|
const int nIterations = 4000; // number of iterations before landing
|
||
|
|
||
|
const double alpha = 1;
|
||
|
const double beta = 2.0;
|
||
|
const double kappa = -2.0;
|
||
|
|
||
|
int MP = 2;
|
||
|
int DP = 5;
|
||
|
int CP = 0;
|
||
|
int type = CV_64F;
|
||
|
|
||
|
Mat processNoiseCov = Mat::zeros( DP, DP, type );
|
||
|
processNoiseCov.at<double>(0, 0) = 1e-14;
|
||
|
processNoiseCov.at<double>(1, 1) = 1e-14;
|
||
|
processNoiseCov.at<double>(2, 2) = 2.4065 * 1e-5;
|
||
|
processNoiseCov.at<double>(3, 3) = 2.4065 * 1e-5;
|
||
|
processNoiseCov.at<double>(4, 4) = 1e-6;
|
||
|
Mat processNoiseCovSqrt = Mat::zeros( DP, DP, type );
|
||
|
sqrt( processNoiseCov, processNoiseCovSqrt );
|
||
|
|
||
|
Mat measurementNoiseCov = Mat::zeros( MP, MP, type );
|
||
|
measurementNoiseCov.at<double>(0, 0) = 1e-3*1e-3;
|
||
|
measurementNoiseCov.at<double>(1, 1) = 0.13*0.13;
|
||
|
Mat measurementNoiseCovSqrt = Mat::zeros( MP, MP, type );
|
||
|
sqrt( measurementNoiseCov, measurementNoiseCovSqrt );
|
||
|
|
||
|
RNG rng( 464 );
|
||
|
|
||
|
Mat state( DP, 1, type );
|
||
|
state.at<double>(0, 0) = 6500.4;
|
||
|
state.at<double>(1, 0) = 349.14;
|
||
|
state.at<double>(2, 0) = -1.8093;
|
||
|
state.at<double>(3, 0) = -6.7967;
|
||
|
state.at<double>(4, 0) = 0.6932;
|
||
|
|
||
|
Mat initState = state.clone();
|
||
|
Mat initStateKF = state.clone();
|
||
|
initStateKF.at<double>(4, 0) = 0.0;
|
||
|
|
||
|
Mat P = 1e-6 * Mat::eye( DP, DP, type );
|
||
|
P.at<double>(4, 4) = 1.0;
|
||
|
|
||
|
Mat measurement( MP, 1, type );
|
||
|
|
||
|
Mat q( DP, 1, type);
|
||
|
Mat r( MP, 1, type);
|
||
|
|
||
|
Ptr<BallisticModel> model( new BallisticModel() );
|
||
|
UnscentedKalmanFilterParams params( DP, MP, CP, 0, 0, model );
|
||
|
|
||
|
params.stateInit = initStateKF.clone();
|
||
|
params.errorCovInit = P.clone();
|
||
|
params.measurementNoiseCov = measurementNoiseCov.clone();
|
||
|
params.processNoiseCov = processNoiseCov.clone();
|
||
|
|
||
|
params.alpha = alpha;
|
||
|
params.beta = beta;
|
||
|
params.k = kappa;
|
||
|
|
||
|
Mat predictStateUKF( DP, 1, type );
|
||
|
Mat correctStateUKF( DP, 1, type );
|
||
|
|
||
|
Mat errors = Mat::zeros( nIterations, 4, type );
|
||
|
Mat u = Mat::zeros( DP, 1, type );
|
||
|
|
||
|
for (int j = 0; j<100; j++)
|
||
|
{
|
||
|
Ptr<UnscentedKalmanFilter> uncsentedKalmanFilter = createUnscentedKalmanFilter(params);
|
||
|
state = initState.clone();
|
||
|
|
||
|
for (int i = 0; i<nIterations; i++)
|
||
|
{
|
||
|
rng.fill( q, RNG::NORMAL, Scalar::all(0), Scalar::all(1) );
|
||
|
q = processNoiseCovSqrt*q;
|
||
|
|
||
|
rng.fill( r, RNG::NORMAL, Scalar::all(0), Scalar::all(1) );
|
||
|
r = measurementNoiseCovSqrt*r;
|
||
|
|
||
|
model->stateConversionFunction(state, u, q, state);
|
||
|
model->measurementFunction(state, r, measurement);
|
||
|
|
||
|
predictStateUKF = uncsentedKalmanFilter->predict();
|
||
|
correctStateUKF = uncsentedKalmanFilter->correct( measurement );
|
||
|
|
||
|
Mat errorUKF = state - correctStateUKF;
|
||
|
|
||
|
for (int l = 0; l<4; l++)
|
||
|
errors.at<double>(i, l) += pow( errorUKF.at<double>(l, 0), 2.0 );
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
errors = errors/100.0;
|
||
|
sqrt( errors, errors );
|
||
|
|
||
|
double max_x1 = cvtest::norm(errors.col(0), NORM_INF);
|
||
|
double max_x2 = cvtest::norm(errors.col(1), NORM_INF);
|
||
|
double max_x3 = cvtest::norm(errors.col(2), NORM_INF);
|
||
|
double max_x4 = cvtest::norm(errors.col(3), NORM_INF);
|
||
|
|
||
|
ASSERT_GE( state_treshold, max_x1 );
|
||
|
ASSERT_GE( state_treshold, max_x2 );
|
||
|
ASSERT_GE( velocity_treshold, max_x3 );
|
||
|
ASSERT_GE( velocity_treshold, max_x4 );
|
||
|
}
|
||
|
|
||
|
|
||
|
//In this test Unscented Kalman Filter are applied to the univariate nonstationary growth model (UNGM).
|
||
|
//This model was used in example from "Unscented Kalman filtering for additive noise case: Augmented vs. non-augmented"
|
||
|
//by Yuanxin Wu and Dewen Hu.
|
||
|
class UnivariateNonstationaryGrowthModel: public UkfSystemModel
|
||
|
{
|
||
|
|
||
|
public:
|
||
|
void stateConversionFunction(const Mat& x_k, const Mat& u_k, const Mat& v_k, Mat& x_kplus1)
|
||
|
{
|
||
|
double x = x_k.at<double>(0, 0);
|
||
|
double n = u_k.at<double>(0, 0);
|
||
|
double q = v_k.at<double>(0, 0);
|
||
|
double u = u_k.at<double>(0, 0);
|
||
|
|
||
|
double x1 = 0.5*x + 25*( x/(x*x + 1) ) + 8*cos( 1.2*(n-1) ) + q + u;
|
||
|
x_kplus1.at<double>(0, 0) = x1;
|
||
|
}
|
||
|
void measurementFunction(const Mat& x_k, const Mat& n_k, Mat& z_k)
|
||
|
{
|
||
|
double x = x_k.at<double>(0, 0);
|
||
|
double r = n_k.at<double>(0, 0);
|
||
|
|
||
|
double y = x*x/20.0 + r;
|
||
|
z_k.at<double>(0, 0) = y;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
TEST(UKF, DISABLED_ungm_mean_squared_error)
|
||
|
{
|
||
|
const double alpha = 1.5;
|
||
|
const double beta = 2.0;
|
||
|
const double kappa = 0.0;
|
||
|
|
||
|
const double mse_treshold = 0.5;
|
||
|
const int nIterations = 500; // number of observed iterations
|
||
|
|
||
|
int MP = 1;
|
||
|
int DP = 1;
|
||
|
int CP = 0;
|
||
|
int type = CV_64F;
|
||
|
|
||
|
Ptr<UnivariateNonstationaryGrowthModel> model( new UnivariateNonstationaryGrowthModel() );
|
||
|
UnscentedKalmanFilterParams params( DP, MP, CP, 0, 0, model );
|
||
|
|
||
|
Mat processNoiseCov = Mat::zeros( DP, DP, type );
|
||
|
processNoiseCov.at<double>(0, 0) = 1.0;
|
||
|
Mat processNoiseCovSqrt = Mat::zeros( DP, DP, type );
|
||
|
sqrt( processNoiseCov, processNoiseCovSqrt );
|
||
|
|
||
|
Mat measurementNoiseCov = Mat::zeros( MP, MP, type );
|
||
|
measurementNoiseCov.at<double>(0, 0) = 1.0;
|
||
|
Mat measurementNoiseCovSqrt = Mat::zeros( MP, MP, type );
|
||
|
sqrt( measurementNoiseCov, measurementNoiseCovSqrt );
|
||
|
|
||
|
Mat P = Mat::eye( DP, DP, type );
|
||
|
|
||
|
Mat state( DP, 1, type );
|
||
|
state.at<double>(0, 0) = 0.1;
|
||
|
|
||
|
Mat initState = state.clone();
|
||
|
initState.at<double>(0, 0) = 0.0;
|
||
|
|
||
|
params.errorCovInit = P;
|
||
|
params.measurementNoiseCov = measurementNoiseCov;
|
||
|
params.processNoiseCov = processNoiseCov;
|
||
|
params.stateInit = initState.clone();
|
||
|
|
||
|
params.alpha = alpha;
|
||
|
params.beta = beta;
|
||
|
params.k = kappa;
|
||
|
|
||
|
Mat correctStateAUKF( DP, 1, type );
|
||
|
|
||
|
Mat measurement( MP, 1, type );
|
||
|
Mat exactMeasurement( MP, 1, type );
|
||
|
|
||
|
Mat q( DP, 1, type );
|
||
|
Mat r( MP, 1, type );
|
||
|
|
||
|
Mat u( DP, 1, type );
|
||
|
Mat zero = Mat::zeros( MP, 1, type );
|
||
|
|
||
|
RNG rng( 216 );
|
||
|
|
||
|
double average_error = 0.0;
|
||
|
for (int j = 0; j<1000; j++)
|
||
|
{
|
||
|
cv::Ptr<UnscentedKalmanFilter> uncsentedKalmanFilter = createUnscentedKalmanFilter( params );
|
||
|
state.at<double>(0, 0) = 0.1;
|
||
|
|
||
|
double mse = 0.0;
|
||
|
for (int i = 0; i<nIterations; i++)
|
||
|
{
|
||
|
rng.fill( q, RNG::NORMAL, Scalar::all(0), Scalar::all(1) );
|
||
|
rng.fill( r, RNG::NORMAL, Scalar::all(0), Scalar::all(1) );
|
||
|
q = processNoiseCovSqrt*q;
|
||
|
r = measurementNoiseCovSqrt*r;
|
||
|
|
||
|
u.at<double>(0, 0) = (double)i;
|
||
|
model->stateConversionFunction(state, u, q, state);
|
||
|
|
||
|
model->measurementFunction(state, zero, exactMeasurement);
|
||
|
model->measurementFunction(state, r, measurement);
|
||
|
|
||
|
uncsentedKalmanFilter->predict( u );
|
||
|
correctStateAUKF = uncsentedKalmanFilter->correct( measurement );
|
||
|
|
||
|
mse += pow( state.at<double>(0, 0) - correctStateAUKF.at<double>(0, 0), 2.0 );
|
||
|
}
|
||
|
mse /= nIterations;
|
||
|
average_error += mse;
|
||
|
}
|
||
|
average_error /= 1000.0;
|
||
|
|
||
|
ASSERT_GE( mse_treshold, average_error );
|
||
|
}
|
||
|
|
||
|
}} // namespace
|