97 lines
3.3 KiB
C++
97 lines
3.3 KiB
C++
|
#include <opencv2/text.hpp>
|
||
|
#include <opencv2/highgui.hpp>
|
||
|
#include <opencv2/imgproc.hpp>
|
||
|
#include <opencv2/dnn.hpp>
|
||
|
|
||
|
#include <sstream>
|
||
|
#include <iostream>
|
||
|
#include <fstream>
|
||
|
|
||
|
using namespace cv;
|
||
|
|
||
|
namespace
|
||
|
{
|
||
|
std::string getHelpStr(const std::string& progFname)
|
||
|
{
|
||
|
std::stringstream out;
|
||
|
out << " Demo of text detection CNN for text detection." << std::endl
|
||
|
<< " Minghui Liao, Baoguang Shi, Xiang Bai, Xinggang Wang, Wenyu Liu: TextBoxes: A Fast Text Detector with a Single Deep Neural Network, AAAI2017\n\n"
|
||
|
<< " Usage: " << progFname << " <output_file> <input_image>" << std::endl
|
||
|
<< " Caffe Model files (textbox.prototxt, TextBoxes_icdar13.caffemodel)"<<std::endl
|
||
|
<< " must be in the current directory. See the documentation of text::TextDetectorCNN class to get download links." << std::endl;
|
||
|
return out.str();
|
||
|
}
|
||
|
|
||
|
bool fileExists (const std::string& filename)
|
||
|
{
|
||
|
std::ifstream f(filename.c_str());
|
||
|
return f.good();
|
||
|
}
|
||
|
|
||
|
void textbox_draw(Mat src, std::vector<Rect>& groups, std::vector<float>& probs, std::vector<int>& indexes)
|
||
|
{
|
||
|
for (size_t i = 0; i < indexes.size(); i++)
|
||
|
{
|
||
|
if (src.type() == CV_8UC3)
|
||
|
{
|
||
|
Rect currrentBox = groups[indexes[i]];
|
||
|
rectangle(src, currrentBox, Scalar( 0, 255, 255 ), 2, LINE_AA);
|
||
|
String label = format("%.2f", probs[indexes[i]]);
|
||
|
std::cout << "text box: " << currrentBox << " confidence: " << probs[indexes[i]] << "\n";
|
||
|
|
||
|
int baseLine = 0;
|
||
|
Size labelSize = getTextSize(label, FONT_HERSHEY_PLAIN, 1, 1, &baseLine);
|
||
|
int yLeftBottom = std::max(currrentBox.y, labelSize.height);
|
||
|
rectangle(src, Point(currrentBox.x, yLeftBottom - labelSize.height),
|
||
|
Point(currrentBox.x + labelSize.width, yLeftBottom + baseLine), Scalar( 255, 255, 255 ), FILLED);
|
||
|
|
||
|
putText(src, label, Point(currrentBox.x, yLeftBottom), FONT_HERSHEY_PLAIN, 1, Scalar( 0,0,0 ), 1, LINE_AA);
|
||
|
}
|
||
|
else
|
||
|
rectangle(src, groups[i], Scalar( 255 ), 3, 8 );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
int main(int argc, const char * argv[])
|
||
|
{
|
||
|
if (argc < 2)
|
||
|
{
|
||
|
std::cout << getHelpStr(argv[0]);
|
||
|
std::cout << "Insufiecient parameters. Aborting!" << std::endl;
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
const std::string modelArch = "textbox.prototxt";
|
||
|
const std::string moddelWeights = "TextBoxes_icdar13.caffemodel";
|
||
|
|
||
|
if (!fileExists(modelArch) || !fileExists(moddelWeights))
|
||
|
{
|
||
|
std::cout << getHelpStr(argv[0]);
|
||
|
std::cout << "Model files not found in the current directory. Aborting!" << std::endl;
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
Mat image = imread(String(argv[1]), IMREAD_COLOR);
|
||
|
|
||
|
std::cout << "Starting Text Box Demo" << std::endl;
|
||
|
Ptr<text::TextDetectorCNN> textSpotter =
|
||
|
text::TextDetectorCNN::create(modelArch, moddelWeights);
|
||
|
|
||
|
std::vector<Rect> bbox;
|
||
|
std::vector<float> outProbabillities;
|
||
|
textSpotter->detect(image, bbox, outProbabillities);
|
||
|
|
||
|
std::vector<int> indexes;
|
||
|
cv::dnn::NMSBoxes(bbox, outProbabillities, 0.3f, 0.4f, indexes);
|
||
|
|
||
|
textbox_draw(image, bbox, outProbabillities, indexes);
|
||
|
|
||
|
imshow("TextBox Demo",image);
|
||
|
std::cout << "Done!" << std::endl << std::endl;
|
||
|
std::cout << "Press any key to exit." << std::endl << std::endl;
|
||
|
waitKey();
|
||
|
return 0;
|
||
|
}
|