123 lines
4.6 KiB
C++
123 lines
4.6 KiB
C++
|
#include <opencv2/text.hpp>
|
||
|
#include <opencv2/highgui.hpp>
|
||
|
#include <opencv2/imgproc.hpp>
|
||
|
#include <opencv2/dnn.hpp>
|
||
|
|
||
|
#include <iostream>
|
||
|
#include <fstream>
|
||
|
|
||
|
using namespace cv;
|
||
|
using namespace std;
|
||
|
|
||
|
namespace
|
||
|
{
|
||
|
void printHelpStr(const string& progFname)
|
||
|
{
|
||
|
cout << " Demo of text recognition CNN for text detection." << endl
|
||
|
<< " Max Jaderberg et al.: Reading Text in the Wild with Convolutional Neural Networks, IJCV 2015"<<endl<<endl
|
||
|
<< " Usage: " << progFname << " <output_file> <input_image>" << endl
|
||
|
<< " Caffe Model files (textbox.prototxt, TextBoxes_icdar13.caffemodel)"<<endl
|
||
|
<< " must be in the current directory. See the documentation of text::TextDetectorCNN class to get download links." << endl
|
||
|
<< " Obtaining text recognition Caffe Model files in linux shell:" << endl
|
||
|
<< " wget http://nicolaou.homouniversalis.org/assets/vgg_text/dictnet_vgg.caffemodel" << endl
|
||
|
<< " wget http://nicolaou.homouniversalis.org/assets/vgg_text/dictnet_vgg_deploy.prototxt" << endl
|
||
|
<< " wget http://nicolaou.homouniversalis.org/assets/vgg_text/dictnet_vgg_labels.txt" <<endl << endl;
|
||
|
}
|
||
|
|
||
|
bool fileExists (const string& filename)
|
||
|
{
|
||
|
ifstream f(filename.c_str());
|
||
|
return f.good();
|
||
|
}
|
||
|
|
||
|
void textbox_draw(Mat src, std::vector<Rect>& groups, std::vector<float>& probs, std::vector<int>& indexes)
|
||
|
{
|
||
|
for (size_t i = 0; i < indexes.size(); i++)
|
||
|
{
|
||
|
if (src.type() == CV_8UC3)
|
||
|
{
|
||
|
Rect currrentBox = groups[indexes[i]];
|
||
|
rectangle(src, currrentBox, Scalar( 0, 255, 255 ), 2, LINE_AA);
|
||
|
String label = format("%.2f", probs[indexes[i]]);
|
||
|
std::cout << "text box: " << currrentBox << " confidence: " << probs[indexes[i]] << "\n";
|
||
|
|
||
|
int baseLine = 0;
|
||
|
Size labelSize = getTextSize(label, FONT_HERSHEY_PLAIN, 1, 1, &baseLine);
|
||
|
int yLeftBottom = std::max(currrentBox.y, labelSize.height);
|
||
|
rectangle(src, Point(currrentBox.x, yLeftBottom - labelSize.height),
|
||
|
Point(currrentBox.x + labelSize.width, yLeftBottom + baseLine), Scalar( 255, 255, 255 ), FILLED);
|
||
|
|
||
|
putText(src, label, Point(currrentBox.x, yLeftBottom), FONT_HERSHEY_PLAIN, 1, Scalar( 0,0,0 ), 1, LINE_AA);
|
||
|
}
|
||
|
else
|
||
|
rectangle(src, groups[i], Scalar( 255 ), 3, 8 );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
int main(int argc, const char * argv[])
|
||
|
{
|
||
|
if (argc < 2)
|
||
|
{
|
||
|
printHelpStr(argv[0]);
|
||
|
cout << "Insufiecient parameters. Aborting!" << endl;
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
const string modelArch = "textbox.prototxt";
|
||
|
const string moddelWeights = "TextBoxes_icdar13.caffemodel";
|
||
|
|
||
|
if (!fileExists(modelArch) || !fileExists(moddelWeights))
|
||
|
{
|
||
|
printHelpStr(argv[0]);
|
||
|
cout << "Model files not found in the current directory. Aborting!" << endl;
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
Mat image = imread(String(argv[1]), IMREAD_COLOR);
|
||
|
|
||
|
cout << "Starting Text Box Demo" << endl;
|
||
|
Ptr<text::TextDetectorCNN> textSpotter =
|
||
|
text::TextDetectorCNN::create(modelArch, moddelWeights);
|
||
|
|
||
|
vector<Rect> bbox;
|
||
|
vector<float> outProbabillities;
|
||
|
textSpotter->detect(image, bbox, outProbabillities);
|
||
|
std::vector<int> indexes;
|
||
|
cv::dnn::NMSBoxes(bbox, outProbabillities, 0.4f, 0.5f, indexes);
|
||
|
|
||
|
Mat image_copy = image.clone();
|
||
|
textbox_draw(image_copy, bbox, outProbabillities, indexes);
|
||
|
imshow("Text detection", image_copy);
|
||
|
image_copy = image.clone();
|
||
|
|
||
|
Ptr<text::OCRHolisticWordRecognizer> wordSpotter =
|
||
|
text::OCRHolisticWordRecognizer::create("dictnet_vgg_deploy.prototxt", "dictnet_vgg.caffemodel", "dictnet_vgg_labels.txt");
|
||
|
|
||
|
for(size_t i = 0; i < indexes.size(); i++)
|
||
|
{
|
||
|
Mat wordImg;
|
||
|
cvtColor(image(bbox[indexes[i]]), wordImg, COLOR_BGR2GRAY);
|
||
|
string word;
|
||
|
vector<float> confs;
|
||
|
wordSpotter->run(wordImg, word, NULL, NULL, &confs);
|
||
|
|
||
|
Rect currrentBox = bbox[indexes[i]];
|
||
|
rectangle(image_copy, currrentBox, Scalar( 0, 255, 255 ), 2, LINE_AA);
|
||
|
|
||
|
int baseLine = 0;
|
||
|
Size labelSize = getTextSize(word, FONT_HERSHEY_PLAIN, 1, 1, &baseLine);
|
||
|
int yLeftBottom = std::max(currrentBox.y, labelSize.height);
|
||
|
rectangle(image_copy, Point(currrentBox.x, yLeftBottom - labelSize.height),
|
||
|
Point(currrentBox.x + labelSize.width, yLeftBottom + baseLine), Scalar( 255, 255, 255 ), FILLED);
|
||
|
|
||
|
putText(image_copy, word, Point(currrentBox.x, yLeftBottom), FONT_HERSHEY_PLAIN, 1, Scalar( 0,0,0 ), 1, LINE_AA);
|
||
|
|
||
|
}
|
||
|
imshow("Text recognition", image_copy);
|
||
|
cout << "Recognition finished. Press any key to exit.\n";
|
||
|
waitKey();
|
||
|
return 0;
|
||
|
}
|