236 lines
8.7 KiB
C++
236 lines
8.7 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// Intel License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "test_precomp.hpp"
|
||
|
|
||
|
namespace opencv_test { namespace {
|
||
|
|
||
|
class CV_BlockMatchingTest : public cvtest::BaseTest
|
||
|
{
|
||
|
public:
|
||
|
CV_BlockMatchingTest();
|
||
|
~CV_BlockMatchingTest();
|
||
|
protected:
|
||
|
void run(int /* idx */);
|
||
|
};
|
||
|
|
||
|
CV_BlockMatchingTest::CV_BlockMatchingTest(){}
|
||
|
CV_BlockMatchingTest::~CV_BlockMatchingTest(){}
|
||
|
|
||
|
static double errorLevel(const Mat &ideal, Mat &actual)
|
||
|
{
|
||
|
uint8_t *date, *harta;
|
||
|
harta = actual.data;
|
||
|
date = ideal.data;
|
||
|
int stride, h;
|
||
|
stride = (int)ideal.step;
|
||
|
h = ideal.rows;
|
||
|
int error = 0;
|
||
|
for (int i = 0; i < ideal.rows; i++)
|
||
|
{
|
||
|
for (int j = 0; j < ideal.cols; j++)
|
||
|
{
|
||
|
if (date[i * stride + j] != 0)
|
||
|
if (abs(date[i * stride + j] - harta[i * stride + j]) > 2 * 16)
|
||
|
{
|
||
|
error += 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return ((double)((error * 100) * 1.0) / (stride * h));
|
||
|
}
|
||
|
void CV_BlockMatchingTest::run(int )
|
||
|
{
|
||
|
Mat image1, image2, gt;
|
||
|
image1 = imread(ts->get_data_path() + "stereomatching/datasets/tsukuba/im2.png", IMREAD_GRAYSCALE);
|
||
|
image2 = imread(ts->get_data_path() + "stereomatching/datasets/tsukuba/im6.png", IMREAD_GRAYSCALE);
|
||
|
gt = imread(ts->get_data_path() + "stereomatching/datasets/tsukuba/disp2.png", IMREAD_GRAYSCALE);
|
||
|
|
||
|
if(image1.empty() || image2.empty() || gt.empty())
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Wrong input data \n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return;
|
||
|
}
|
||
|
if(image1.rows != image2.rows || image1.cols != image2.cols || gt.cols != image1.cols || gt.rows != image1.rows)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Wrong input / output dimension \n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
RNG range;
|
||
|
//set the parameters
|
||
|
int binary_descriptor_type = range.uniform(0,8);
|
||
|
int kernel_size, aggregation_window;
|
||
|
if(binary_descriptor_type == 0)
|
||
|
kernel_size = 5;
|
||
|
else if(binary_descriptor_type == 2 || binary_descriptor_type == 3)
|
||
|
kernel_size = 7;
|
||
|
else if(binary_descriptor_type == 1)
|
||
|
kernel_size = 11;
|
||
|
else
|
||
|
kernel_size = 9;
|
||
|
if(binary_descriptor_type == 3)
|
||
|
aggregation_window = 13;
|
||
|
else
|
||
|
aggregation_window = 11;
|
||
|
Mat test = Mat(image1.rows, image1.cols, CV_8UC1);
|
||
|
Ptr<StereoBinaryBM> sbm = StereoBinaryBM::create(16, kernel_size);
|
||
|
//we set the corresponding parameters
|
||
|
sbm->setPreFilterCap(31);
|
||
|
sbm->setMinDisparity(0);
|
||
|
sbm->setTextureThreshold(10);
|
||
|
sbm->setUniquenessRatio(0);
|
||
|
sbm->setSpeckleWindowSize(400);//speckle size
|
||
|
sbm->setSpeckleRange(200);
|
||
|
sbm->setDisp12MaxDiff(0);
|
||
|
sbm->setScalleFactor(16);//the scaling factor
|
||
|
sbm->setBinaryKernelType(binary_descriptor_type);//binary descriptor kernel
|
||
|
sbm->setAgregationWindowSize(aggregation_window);
|
||
|
//speckle removal algorithm the user can choose between the average speckle removal algorithm
|
||
|
//or the classical version that was implemented in open cv
|
||
|
sbm->setSpekleRemovalTechnique(CV_SPECKLE_REMOVAL_AVG_ALGORITHM);
|
||
|
sbm->setUsePrefilter(false);//pre-filter or not the images prior to making the transformations
|
||
|
//-- calculate the disparity image
|
||
|
sbm->compute(image1, image2, test);
|
||
|
if(test.empty())
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Wrong input / output dimension \n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
return;
|
||
|
}
|
||
|
if(errorLevel(gt,test) > 20)
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG,
|
||
|
"Too big error\n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
class CV_SGBlockMatchingTest : public cvtest::BaseTest
|
||
|
{
|
||
|
public:
|
||
|
CV_SGBlockMatchingTest();
|
||
|
~CV_SGBlockMatchingTest();
|
||
|
protected:
|
||
|
void run(int /* idx */);
|
||
|
};
|
||
|
|
||
|
CV_SGBlockMatchingTest::CV_SGBlockMatchingTest(){}
|
||
|
CV_SGBlockMatchingTest::~CV_SGBlockMatchingTest(){}
|
||
|
|
||
|
void CV_SGBlockMatchingTest::run(int )
|
||
|
{
|
||
|
Mat image1, image2, gt;
|
||
|
image1 = imread(ts->get_data_path() + "stereomatching/datasets/tsukuba/im2.png", IMREAD_GRAYSCALE);
|
||
|
image2 = imread(ts->get_data_path() + "stereomatching/datasets/tsukuba/im6.png", IMREAD_GRAYSCALE);
|
||
|
gt = imread(ts->get_data_path() + "stereomatching/datasets/tsukuba/disp2.png", IMREAD_GRAYSCALE);
|
||
|
|
||
|
|
||
|
if(image1.empty() || image2.empty() || gt.empty())
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Wrong input data \n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return;
|
||
|
}
|
||
|
if(image1.rows != image2.rows || image1.cols != image2.cols || gt.cols != image1.cols || gt.rows != image1.rows)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Wrong input / output dimension \n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
RNG range;
|
||
|
//set the parameters
|
||
|
int binary_descriptor_type = range.uniform(0,8);
|
||
|
int kernel_size;
|
||
|
if(binary_descriptor_type == 0)
|
||
|
kernel_size = 5;
|
||
|
else if(binary_descriptor_type == 2 || binary_descriptor_type == 3)
|
||
|
kernel_size = 7;
|
||
|
else if(binary_descriptor_type == 1)
|
||
|
kernel_size = 11;
|
||
|
else
|
||
|
kernel_size = 9;
|
||
|
|
||
|
Mat test = Mat(image1.rows, image1.cols, CV_8UC1);
|
||
|
Mat imgDisparity16S2 = Mat(image1.rows, image1.cols, CV_16S);
|
||
|
Ptr<StereoBinarySGBM> sgbm = StereoBinarySGBM::create(0, 16, kernel_size);
|
||
|
//setting the penalties for sgbm
|
||
|
sgbm->setP1(10);
|
||
|
sgbm->setP2(100);
|
||
|
sgbm->setMinDisparity(0);
|
||
|
sgbm->setNumDisparities(16);//set disparity number
|
||
|
sgbm->setUniquenessRatio(1);
|
||
|
sgbm->setSpeckleWindowSize(400);
|
||
|
sgbm->setSpeckleRange(200);
|
||
|
sgbm->setDisp12MaxDiff(1);
|
||
|
sgbm->setBinaryKernelType(binary_descriptor_type);//set the binary descriptor
|
||
|
sgbm->setSpekleRemovalTechnique(CV_SPECKLE_REMOVAL_AVG_ALGORITHM); //the avg speckle removal algorithm
|
||
|
sgbm->setSubPixelInterpolationMethod(CV_SIMETRICV_INTERPOLATION);// the SIMETRIC V interpolation method
|
||
|
sgbm->compute(image1, image2, imgDisparity16S2);
|
||
|
double minVal; double maxVal;
|
||
|
minMaxLoc(imgDisparity16S2, &minVal, &maxVal);
|
||
|
|
||
|
imgDisparity16S2.convertTo(test, CV_8UC1, 255 / (maxVal - minVal));
|
||
|
|
||
|
if(test.empty())
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Wrong input / output dimension \n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
return;
|
||
|
}
|
||
|
double error = errorLevel(gt,test);
|
||
|
if(error > 10)
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG,
|
||
|
"Too big error\n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
TEST(block_matching_simple_test, accuracy) { CV_BlockMatchingTest test; test.safe_run(); }
|
||
|
TEST(SG_block_matching_simple_test, accuracy) { CV_SGBlockMatchingTest test; test.safe_run(); }
|
||
|
|
||
|
|
||
|
}} // namespace
|