OpenCV_4.2.0/opencv_contrib-4.2.0/modules/rgbd/test/test_odometry.cpp

333 lines
11 KiB
C++
Raw Normal View History

2024-07-25 16:47:56 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
// This code is also subject to the license terms in the LICENSE_KinectFusion.md file found in this module's directory
// This code is also subject to the license terms in the LICENSE_WillowGarage.md file found in this module's directory
#include "test_precomp.hpp"
namespace opencv_test { namespace {
#define SHOW_DEBUG_LOG 0
#define SHOW_DEBUG_IMAGES 0
static
void warpFrame(const Mat& image, const Mat& depth, const Mat& rvec, const Mat& tvec, const Mat& K,
Mat& warpedImage, Mat& warpedDepth)
{
CV_Assert(!image.empty());
CV_Assert(image.type() == CV_8UC1);
CV_Assert(depth.size() == image.size());
CV_Assert(depth.type() == CV_32FC1);
CV_Assert(!rvec.empty());
CV_Assert(rvec.total() == 3);
CV_Assert(rvec.type() == CV_64FC1);
CV_Assert(!tvec.empty());
CV_Assert(tvec.size() == Size(1, 3));
CV_Assert(tvec.type() == CV_64FC1);
warpedImage.create(image.size(), CV_8UC1);
warpedImage = Scalar(0);
warpedDepth.create(image.size(), CV_32FC1);
warpedDepth = Scalar(FLT_MAX);
Mat cloud;
depthTo3d(depth, K, cloud);
Mat Rt = Mat::eye(4, 4, CV_64FC1);
{
Mat R, dst;
Rodrigues(rvec, R);
dst = Rt(Rect(0,0,3,3));
R.copyTo(dst);
dst = Rt(Rect(3,0,1,3));
tvec.copyTo(dst);
}
Mat warpedCloud, warpedImagePoints;
perspectiveTransform(cloud, warpedCloud, Rt);
projectPoints(warpedCloud.reshape(3, 1), Mat(3,1,CV_32FC1, Scalar(0)), Mat(3,1,CV_32FC1, Scalar(0)), K, Mat(1,5,CV_32FC1, Scalar(0)), warpedImagePoints);
warpedImagePoints = warpedImagePoints.reshape(2, cloud.rows);
Rect r(0, 0, image.cols, image.rows);
for(int y = 0; y < cloud.rows; y++)
{
for(int x = 0; x < cloud.cols; x++)
{
Point p = warpedImagePoints.at<Point2f>(y,x);
if(r.contains(p))
{
float curDepth = warpedDepth.at<float>(p.y, p.x);
float newDepth = warpedCloud.at<Point3f>(y, x).z;
if(newDepth < curDepth && newDepth > 0)
{
warpedImage.at<uchar>(p.y, p.x) = image.at<uchar>(y,x);
warpedDepth.at<float>(p.y, p.x) = newDepth;
}
}
}
}
warpedDepth.setTo(std::numeric_limits<float>::quiet_NaN(), warpedDepth > 100);
}
static
void dilateFrame(Mat& image, Mat& depth)
{
CV_Assert(!image.empty());
CV_Assert(image.type() == CV_8UC1);
CV_Assert(!depth.empty());
CV_Assert(depth.type() == CV_32FC1);
CV_Assert(depth.size() == image.size());
Mat mask(image.size(), CV_8UC1, Scalar(255));
for(int y = 0; y < depth.rows; y++)
for(int x = 0; x < depth.cols; x++)
if(cvIsNaN(depth.at<float>(y,x)) || depth.at<float>(y,x) > 10 || depth.at<float>(y,x) <= FLT_EPSILON)
mask.at<uchar>(y,x) = 0;
image.setTo(255, ~mask);
Mat minImage;
erode(image, minImage, Mat());
image.setTo(0, ~mask);
Mat maxImage;
dilate(image, maxImage, Mat());
depth.setTo(FLT_MAX, ~mask);
Mat minDepth;
erode(depth, minDepth, Mat());
depth.setTo(0, ~mask);
Mat maxDepth;
dilate(depth, maxDepth, Mat());
Mat dilatedMask;
dilate(mask, dilatedMask, Mat(), Point(-1,-1), 1);
for(int y = 0; y < depth.rows; y++)
for(int x = 0; x < depth.cols; x++)
if(!mask.at<uchar>(y,x) && dilatedMask.at<uchar>(y,x))
{
image.at<uchar>(y,x) = static_cast<uchar>(0.5f * (static_cast<float>(minImage.at<uchar>(y,x)) +
static_cast<float>(maxImage.at<uchar>(y,x))));
depth.at<float>(y,x) = 0.5f * (minDepth.at<float>(y,x) + maxDepth.at<float>(y,x));
}
}
class CV_OdometryTest : public cvtest::BaseTest
{
public:
CV_OdometryTest(const Ptr<Odometry>& _odometry,
double _maxError1,
double _maxError5,
double _idError = DBL_EPSILON) :
odometry(_odometry),
maxError1(_maxError1),
maxError5(_maxError5),
idError(_idError)
{ }
protected:
bool readData(Mat& image, Mat& depth) const;
static void generateRandomTransformation(Mat& R, Mat& t);
virtual void run(int);
Ptr<Odometry> odometry;
double maxError1;
double maxError5;
double idError;
};
bool CV_OdometryTest::readData(Mat& image, Mat& depth) const
{
std::string imageFilename = ts->get_data_path() + "rgbd/rgb.png";
std::string depthFilename = ts->get_data_path() + "rgbd/depth.png";
image = imread(imageFilename, 0);
depth = imread(depthFilename, -1);
if(image.empty())
{
ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str() );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
return false;
}
if(depth.empty())
{
ts->printf( cvtest::TS::LOG, "Depth %s can not be read.\n", depthFilename.c_str() );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
ts->set_gtest_status();
return false;
}
CV_DbgAssert(image.type() == CV_8UC1);
CV_DbgAssert(depth.type() == CV_16UC1);
{
Mat depth_flt;
depth.convertTo(depth_flt, CV_32FC1, 1.f/5000.f);
depth_flt.setTo(std::numeric_limits<float>::quiet_NaN(), depth_flt < FLT_EPSILON);
depth = depth_flt;
}
return true;
}
void CV_OdometryTest::generateRandomTransformation(Mat& rvec, Mat& tvec)
{
const float maxRotation = (float)(3.f / 180.f * CV_PI); //rad
const float maxTranslation = 0.02f; //m
RNG& rng = theRNG();
rvec.create(3, 1, CV_64FC1);
tvec.create(3, 1, CV_64FC1);
randu(rvec, Scalar(-1000), Scalar(1000));
normalize(rvec, rvec, rng.uniform(0.007f, maxRotation));
randu(tvec, Scalar(-1000), Scalar(1000));
normalize(tvec, tvec, rng.uniform(0.008f, maxTranslation));
}
void CV_OdometryTest::run(int)
{
float fx = 525.0f, // default
fy = 525.0f,
cx = 319.5f,
cy = 239.5f;
Mat K = Mat::eye(3,3,CV_32FC1);
{
K.at<float>(0,0) = fx;
K.at<float>(1,1) = fy;
K.at<float>(0,2) = cx;
K.at<float>(1,2) = cy;
}
Mat image, depth;
if(!readData(image, depth))
return;
odometry->setCameraMatrix(K);
Mat calcRt;
// 1. Try to find Rt between the same frame (try masks also).
bool isComputed = odometry->compute(image, depth, Mat(image.size(), CV_8UC1, Scalar(255)),
image, depth, Mat(image.size(), CV_8UC1, Scalar(255)),
calcRt);
if(!isComputed)
{
ts->printf(cvtest::TS::LOG, "Can not find Rt between the same frame");
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
}
double diff = cv::norm(calcRt, Mat::eye(4,4,CV_64FC1));
if(diff > idError)
{
ts->printf(cvtest::TS::LOG, "Incorrect transformation between the same frame (not the identity matrix), diff = %f", diff);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
}
// 2. Generate random rigid body motion in some ranges several times (iterCount).
// On each iteration an input frame is warped using generated transformation.
// Odometry is run on the following pair: the original frame and the warped one.
// Comparing a computed transformation with an applied one we compute 2 errors:
// better_1time_count - count of poses which error is less than ground truth pose,
// better_5times_count - count of poses which error is 5 times less than ground truth pose.
int iterCount = 100;
int better_1time_count = 0;
int better_5times_count = 0;
for(int iter = 0; iter < iterCount; iter++)
{
Mat rvec, tvec;
generateRandomTransformation(rvec, tvec);
Mat warpedImage, warpedDepth;
warpFrame(image, depth, rvec, tvec, K, warpedImage, warpedDepth);
dilateFrame(warpedImage, warpedDepth); // due to inaccuracy after warping
Mat imageMask(image.size(), CV_8UC1, Scalar(255));
isComputed = odometry->compute(image, depth, imageMask, warpedImage, warpedDepth, imageMask, calcRt);
if(!isComputed)
continue;
Mat calcR = calcRt(Rect(0,0,3,3)), calcRvec;
Rodrigues(calcR, calcRvec);
calcRvec = calcRvec.reshape(rvec.channels(), rvec.rows);
Mat calcTvec = calcRt(Rect(3,0,1,3));
#if SHOW_DEBUG_IMAGES
imshow("image", image);
imshow("warpedImage", warpedImage);
Mat resultImage, resultDepth;
warpFrame(image, depth, calcRvec, calcTvec, K, resultImage, resultDepth);
imshow("resultImage", resultImage);
waitKey();
#endif
// compare rotation
double rdiffnorm = cv::norm(rvec - calcRvec),
rnorm = cv::norm(rvec);
double tdiffnorm = cv::norm(tvec - calcTvec),
tnorm = cv::norm(tvec);
if(rdiffnorm < rnorm && tdiffnorm < tnorm)
better_1time_count++;
if(5. * rdiffnorm < rnorm && 5 * tdiffnorm < tnorm)
better_5times_count++;
#if SHOW_DEBUG_LOG
std::cout << "Iter " << iter << std::endl;
std::cout << "rdiffnorm " << rdiffnorm << "; rnorm " << rnorm << std::endl;
std::cout << "tdiffnorm " << tdiffnorm << "; tnorm " << tnorm << std::endl;
std::cout << "better_1time_count " << better_1time_count << "; better_5time_count " << better_5times_count << std::endl;
#endif
}
if(static_cast<double>(better_1time_count) < maxError1 * static_cast<double>(iterCount))
{
ts->printf(cvtest::TS::LOG, "\nIncorrect count of accurate poses [1st case]: %f / %f", static_cast<double>(better_1time_count), maxError1 * static_cast<double>(iterCount));
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
}
if(static_cast<double>(better_5times_count) < maxError5 * static_cast<double>(iterCount))
{
ts->printf(cvtest::TS::LOG, "\nIncorrect count of accurate poses [2nd case]: %f / %f", static_cast<double>(better_5times_count), maxError5 * static_cast<double>(iterCount));
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
}
}
/****************************************************************************************\
* Tests registrations *
\****************************************************************************************/
TEST(RGBD_Odometry_Rgbd, algorithmic)
{
CV_OdometryTest test(cv::rgbd::Odometry::create("RgbdOdometry"), 0.99, 0.89);
test.safe_run();
}
TEST(RGBD_Odometry_ICP, algorithmic)
{
CV_OdometryTest test(cv::rgbd::Odometry::create("ICPOdometry"), 0.99, 0.99);
test.safe_run();
}
TEST(RGBD_Odometry_RgbdICP, algorithmic)
{
CV_OdometryTest test(cv::rgbd::Odometry::create("RgbdICPOdometry"), 0.99, 0.99);
test.safe_run();
}
TEST(RGBD_Odometry_FastICP, algorithmic)
{
CV_OdometryTest test(cv::rgbd::Odometry::create("FastICPOdometry"), 0.99, 0.99, FLT_EPSILON);
test.safe_run();
}
}} // namespace