OpenCV_4.2.0/opencv_contrib-4.2.0/modules/face/samples/sample_face_swapping.cpp

202 lines
8.5 KiB
C++
Raw Normal View History

2024-07-25 16:47:56 +08:00
#include "opencv2/face.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/objdetect.hpp"
#include "opencv2/photo.hpp" // seamlessClone()
#include <iostream>
using namespace cv;
using namespace cv::face;
using namespace std;
static bool myDetector(InputArray image, OutputArray faces, CascadeClassifier *face_cascade)
{
Mat gray;
if (image.channels() > 1)
cvtColor(image, gray, COLOR_BGR2GRAY);
else
gray = image.getMat().clone();
equalizeHist(gray, gray);
std::vector<Rect> faces_;
face_cascade->detectMultiScale(gray, faces_, 1.4, 2, CASCADE_SCALE_IMAGE, Size(30, 30));
Mat(faces_).copyTo(faces);
return true;
}
void divideIntoTriangles(Rect rect, vector<Point2f> &points, vector< vector<int> > &delaunayTri);
void warpTriangle(Mat &img1, Mat &img2, vector<Point2f> &triangle1, vector<Point2f> &triangle2);
//Divide the face into triangles for warping
void divideIntoTriangles(Rect rect, vector<Point2f> &points, vector< vector<int> > &Tri){
// Create an instance of Subdiv2D
Subdiv2D subdiv(rect);
// Insert points into subdiv
for( vector<Point2f>::iterator it = points.begin(); it != points.end(); it++)
subdiv.insert(*it);
vector<Vec6f> triangleList;
subdiv.getTriangleList(triangleList);
vector<Point2f> pt(3);
vector<int> ind(3);
for( size_t i = 0; i < triangleList.size(); i++ )
{
Vec6f triangle = triangleList[i];
pt[0] = Point2f(triangle[0], triangle[1]);
pt[1] = Point2f(triangle[2], triangle[3]);
pt[2] = Point2f(triangle[4], triangle[5]);
if ( rect.contains(pt[0]) && rect.contains(pt[1]) && rect.contains(pt[2])){
for(int j = 0; j < 3; j++)
for(size_t k = 0; k < points.size(); k++)
if(abs(pt[j].x - points[k].x) < 1.0 && abs(pt[j].y - points[k].y) < 1)
ind[j] =(int) k;
Tri.push_back(ind);
}
}
}
void warpTriangle(Mat &img1, Mat &img2, vector<Point2f> &triangle1, vector<Point2f> &triangle2)
{
Rect rectangle1 = boundingRect(triangle1);
Rect rectangle2 = boundingRect(triangle2);
// Offset points by left top corner of the respective rectangles
vector<Point2f> triangle1Rect, triangle2Rect;
vector<Point> triangle2RectInt;
for(int i = 0; i < 3; i++)
{
triangle1Rect.push_back( Point2f( triangle1[i].x - rectangle1.x, triangle1[i].y - rectangle1.y) );
triangle2Rect.push_back( Point2f( triangle2[i].x - rectangle2.x, triangle2[i].y - rectangle2.y) );
triangle2RectInt.push_back( Point((int)(triangle2[i].x - rectangle2.x),(int) (triangle2[i].y - rectangle2.y))); // for fillConvexPoly
}
// Get mask by filling triangle
Mat mask = Mat::zeros(rectangle2.height, rectangle2.width, CV_32FC3);
fillConvexPoly(mask, triangle2RectInt, Scalar(1.0, 1.0, 1.0), 16, 0);
// Apply warpImage to small rectangular patches
Mat img1Rect;
img1(rectangle1).copyTo(img1Rect);
Mat img2Rect = Mat::zeros(rectangle2.height, rectangle2.width, img1Rect.type());
Mat warp_mat = getAffineTransform(triangle1Rect, triangle2Rect);
warpAffine( img1Rect, img2Rect, warp_mat, img2Rect.size(), INTER_LINEAR, BORDER_REFLECT_101);
multiply(img2Rect,mask, img2Rect);
multiply(img2(rectangle2), Scalar(1.0,1.0,1.0) - mask, img2(rectangle2));
img2(rectangle2) = img2(rectangle2) + img2Rect;
}
int main( int argc, char** argv)
{
//Give the path to the directory containing all the files containing data
CommandLineParser parser(argc, argv,
"{ help h usage ? | | give the following arguments in following format }"
"{ image1 i1 | | (required) path to the first image file in which you want to apply swapping }"
"{ image2 i2 | | (required) path to the second image file in which you want to apply face swapping }"
"{ model m | | (required) path to the file containing model to be loaded for face landmark detection}"
"{ face_cascade f | | Path to the face cascade xml file which you want to use as a detector}"
);
// Read in the input arguments
if (parser.has("help")){
parser.printMessage();
cerr << "TIP: Use absolute paths to avoid any problems with the software!" << endl;
return 0;
}
Mat img1=imread(parser.get<string>("image1"));
Mat img2=imread(parser.get<string>("image2"));
if (img1.empty()||img2.empty()){
if(img1.empty()){
parser.printMessage();
cerr << parser.get<string>("image1")<<" not found" << endl;
return -1;
}
if (img2.empty()){
parser.printMessage();
cerr << parser.get<string>("image2")<<" not found" << endl;
return -1;
}
}
string modelfile_name(parser.get<string>("model"));
if (modelfile_name.empty()){
parser.printMessage();
cerr << "Model file name not found." << endl;
return -1;
}
string cascade_name(parser.get<string>("face_cascade"));
if (cascade_name.empty()){
parser.printMessage();
cerr << "The name of the cascade classifier to be loaded to detect faces is not found" << endl;
return -1;
}
//create a pointer to call the base class
//pass the face cascade xml file which you want to pass as a detector
CascadeClassifier face_cascade;
face_cascade.load(cascade_name);
FacemarkKazemi::Params params;
Ptr<FacemarkKazemi> facemark = FacemarkKazemi::create(params);
facemark->setFaceDetector((FN_FaceDetector)myDetector, &face_cascade);
facemark->loadModel(modelfile_name);
cout<<"Loaded model"<<endl;
//vector to store the faces detected in the image
vector<Rect> faces1,faces2;
vector< vector<Point2f> > shape1,shape2;
//Detect faces in the current image
float ratio1 = (float)img1.cols/(float)img1.rows;
float ratio2 = (float)img2.cols/(float)img2.rows;
resize(img1,img1,Size((int)(640*ratio1),(int)(640*ratio1)), 0, 0, INTER_LINEAR_EXACT);
resize(img2,img2,Size((int)(640*ratio2),(int)(640*ratio2)), 0, 0, INTER_LINEAR_EXACT);
Mat img1Warped = img2.clone();
facemark->getFaces(img1,faces1);
facemark->getFaces(img2,faces2);
//Initialise the shape of the faces
facemark->fit(img1,faces1,shape1);
facemark->fit(img2,faces2,shape2);
unsigned long numswaps = (unsigned long)min((unsigned long)shape1.size(),(unsigned long)shape2.size());
for(unsigned long z=0;z<numswaps;z++){
vector<Point2f> points1 = shape1[z];
vector<Point2f> points2 = shape2[z];
img1.convertTo(img1, CV_32F);
img1Warped.convertTo(img1Warped, CV_32F);
// Find convex hull
vector<Point2f> boundary_image1;
vector<Point2f> boundary_image2;
vector<int> index;
convexHull(Mat(points2),index, false, false);
for(size_t i = 0; i < index.size(); i++)
{
boundary_image1.push_back(points1[index[i]]);
boundary_image2.push_back(points2[index[i]]);
}
// Triangulation for points on the convex hull
vector< vector<int> > triangles;
Rect rect(0, 0, img1Warped.cols, img1Warped.rows);
divideIntoTriangles(rect, boundary_image2, triangles);
// Apply affine transformation to Delaunay triangles
for(size_t i = 0; i < triangles.size(); i++)
{
vector<Point2f> triangle1, triangle2;
// Get points for img1, img2 corresponding to the triangles
for(int j = 0; j < 3; j++)
{
triangle1.push_back(boundary_image1[triangles[i][j]]);
triangle2.push_back(boundary_image2[triangles[i][j]]);
}
warpTriangle(img1, img1Warped, triangle1, triangle2);
}
// Calculate mask
vector<Point> hull;
for(size_t i = 0; i < boundary_image2.size(); i++)
{
Point pt((int)boundary_image2[i].x,(int)boundary_image2[i].y);
hull.push_back(pt);
}
Mat mask = Mat::zeros(img2.rows, img2.cols, img2.depth());
fillConvexPoly(mask,&hull[0],(int)hull.size(), Scalar(255,255,255));
// Clone seamlessly.
Rect r = boundingRect(boundary_image2);
Point center = (r.tl() + r.br()) / 2;
Mat output;
img1Warped.convertTo(img1Warped, CV_8UC3);
seamlessClone(img1Warped,img2, mask, center, output, NORMAL_CLONE);
imshow("Face_Swapped", output);
waitKey(0);
destroyAllWindows();
}
return 0;
}