148 lines
5.8 KiB
C++
148 lines
5.8 KiB
C++
|
/*
|
||
|
* Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>.
|
||
|
* Released to public domain under terms of the BSD Simplified license.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions are met:
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* * Neither the name of the organization nor the names of its contributors
|
||
|
* may be used to endorse or promote products derived from this software
|
||
|
* without specific prior written permission.
|
||
|
*
|
||
|
* See <http://www.opensource.org/licenses/bsd-license>
|
||
|
*/
|
||
|
|
||
|
#include "opencv2/core.hpp"
|
||
|
#include "opencv2/face.hpp"
|
||
|
#include "opencv2/highgui.hpp"
|
||
|
|
||
|
#include <iostream>
|
||
|
#include <fstream>
|
||
|
#include <sstream>
|
||
|
|
||
|
using namespace cv;
|
||
|
using namespace cv::face;
|
||
|
using namespace std;
|
||
|
|
||
|
static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';') {
|
||
|
std::ifstream file(filename.c_str(), ifstream::in);
|
||
|
if (!file) {
|
||
|
string error_message = "No valid input file was given, please check the given filename.";
|
||
|
CV_Error(Error::StsBadArg, error_message);
|
||
|
}
|
||
|
string line, path, classlabel;
|
||
|
while (getline(file, line)) {
|
||
|
stringstream liness(line);
|
||
|
getline(liness, path, separator);
|
||
|
getline(liness, classlabel);
|
||
|
if(!path.empty() && !classlabel.empty()) {
|
||
|
images.push_back(imread(path, 0));
|
||
|
labels.push_back(atoi(classlabel.c_str()));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int main(int argc, const char *argv[]) {
|
||
|
// Check for valid command line arguments, print usage
|
||
|
// if no arguments were given.
|
||
|
if (argc != 2) {
|
||
|
cout << "usage: " << argv[0] << " <csv.ext>" << endl;
|
||
|
exit(1);
|
||
|
}
|
||
|
// Get the path to your CSV.
|
||
|
string fn_csv = string(argv[1]);
|
||
|
// These vectors hold the images and corresponding labels.
|
||
|
vector<Mat> images;
|
||
|
vector<int> labels;
|
||
|
// Read in the data. This can fail if no valid
|
||
|
// input filename is given.
|
||
|
try {
|
||
|
read_csv(fn_csv, images, labels);
|
||
|
} catch (const cv::Exception& e) {
|
||
|
cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
|
||
|
// nothing more we can do
|
||
|
exit(1);
|
||
|
}
|
||
|
// Quit if there are not enough images for this demo.
|
||
|
if(images.size() <= 1) {
|
||
|
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
|
||
|
CV_Error(Error::StsError, error_message);
|
||
|
}
|
||
|
// The following lines simply get the last images from
|
||
|
// your dataset and remove it from the vector. This is
|
||
|
// done, so that the training data (which we learn the
|
||
|
// cv::LBPHFaceRecognizer on) and the test data we test
|
||
|
// the model with, do not overlap.
|
||
|
Mat testSample = images[images.size() - 1];
|
||
|
int testLabel = labels[labels.size() - 1];
|
||
|
images.pop_back();
|
||
|
labels.pop_back();
|
||
|
// The following lines create an LBPH model for
|
||
|
// face recognition and train it with the images and
|
||
|
// labels read from the given CSV file.
|
||
|
//
|
||
|
// The LBPHFaceRecognizer uses Extended Local Binary Patterns
|
||
|
// (it's probably configurable with other operators at a later
|
||
|
// point), and has the following default values
|
||
|
//
|
||
|
// radius = 1
|
||
|
// neighbors = 8
|
||
|
// grid_x = 8
|
||
|
// grid_y = 8
|
||
|
//
|
||
|
// So if you want a LBPH FaceRecognizer using a radius of
|
||
|
// 2 and 16 neighbors, call the factory method with:
|
||
|
//
|
||
|
// cv::face::LBPHFaceRecognizer::create(2, 16);
|
||
|
//
|
||
|
// And if you want a threshold (e.g. 123.0) call it with its default values:
|
||
|
//
|
||
|
// cv::face::LBPHFaceRecognizer::create(1,8,8,8,123.0)
|
||
|
//
|
||
|
Ptr<LBPHFaceRecognizer> model = LBPHFaceRecognizer::create();
|
||
|
model->train(images, labels);
|
||
|
// The following line predicts the label of a given
|
||
|
// test image:
|
||
|
int predictedLabel = model->predict(testSample);
|
||
|
//
|
||
|
// To get the confidence of a prediction call the model with:
|
||
|
//
|
||
|
// int predictedLabel = -1;
|
||
|
// double confidence = 0.0;
|
||
|
// model->predict(testSample, predictedLabel, confidence);
|
||
|
//
|
||
|
string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
|
||
|
cout << result_message << endl;
|
||
|
// First we'll use it to set the threshold of the LBPHFaceRecognizer
|
||
|
// to 0.0 without retraining the model. This can be useful if
|
||
|
// you are evaluating the model:
|
||
|
//
|
||
|
model->setThreshold(0.0);
|
||
|
// Now the threshold of this model is set to 0.0. A prediction
|
||
|
// now returns -1, as it's impossible to have a distance below
|
||
|
// it
|
||
|
predictedLabel = model->predict(testSample);
|
||
|
cout << "Predicted class = " << predictedLabel << endl;
|
||
|
// Show some informations about the model, as there's no cool
|
||
|
// Model data to display as in Eigenfaces/Fisherfaces.
|
||
|
// Due to efficiency reasons the LBP images are not stored
|
||
|
// within the model:
|
||
|
cout << "Model Information:" << endl;
|
||
|
string model_info = format("\tLBPH(radius=%i, neighbors=%i, grid_x=%i, grid_y=%i, threshold=%.2f)",
|
||
|
model->getRadius(),
|
||
|
model->getNeighbors(),
|
||
|
model->getGridX(),
|
||
|
model->getGridY(),
|
||
|
model->getThreshold());
|
||
|
cout << model_info << endl;
|
||
|
// We could get the histograms for example:
|
||
|
vector<Mat> histograms = model->getHistograms();
|
||
|
// But should I really visualize it? Probably the length is interesting:
|
||
|
cout << "Size of the histograms: " << histograms[0].total() << endl;
|
||
|
return 0;
|
||
|
}
|