194 lines
7.4 KiB
C++
194 lines
7.4 KiB
C++
|
/*
|
||
|
* Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>.
|
||
|
* Released to public domain under terms of the BSD Simplified license.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions are met:
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* * Neither the name of the organization nor the names of its contributors
|
||
|
* may be used to endorse or promote products derived from this software
|
||
|
* without specific prior written permission.
|
||
|
*
|
||
|
* See <http://www.opensource.org/licenses/bsd-license>
|
||
|
*/
|
||
|
|
||
|
#include "opencv2/core.hpp"
|
||
|
#include "opencv2/face.hpp"
|
||
|
#include "opencv2/highgui.hpp"
|
||
|
#include "opencv2/imgproc.hpp"
|
||
|
|
||
|
#include <iostream>
|
||
|
#include <fstream>
|
||
|
#include <sstream>
|
||
|
|
||
|
using namespace cv;
|
||
|
using namespace cv::face;
|
||
|
using namespace std;
|
||
|
|
||
|
static Mat norm_0_255(InputArray _src) {
|
||
|
Mat src = _src.getMat();
|
||
|
// Create and return normalized image:
|
||
|
Mat dst;
|
||
|
switch(src.channels()) {
|
||
|
case 1:
|
||
|
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1);
|
||
|
break;
|
||
|
case 3:
|
||
|
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC3);
|
||
|
break;
|
||
|
default:
|
||
|
src.copyTo(dst);
|
||
|
break;
|
||
|
}
|
||
|
return dst;
|
||
|
}
|
||
|
|
||
|
static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';') {
|
||
|
std::ifstream file(filename.c_str(), ifstream::in);
|
||
|
if (!file) {
|
||
|
string error_message = "No valid input file was given, please check the given filename.";
|
||
|
CV_Error(Error::StsBadArg, error_message);
|
||
|
}
|
||
|
string line, path, classlabel;
|
||
|
while (getline(file, line)) {
|
||
|
stringstream liness(line);
|
||
|
getline(liness, path, separator);
|
||
|
getline(liness, classlabel);
|
||
|
if(!path.empty() && !classlabel.empty()) {
|
||
|
images.push_back(imread(path, 0));
|
||
|
labels.push_back(atoi(classlabel.c_str()));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int main(int argc, const char *argv[]) {
|
||
|
// Check for valid command line arguments, print usage
|
||
|
// if no arguments were given.
|
||
|
if (argc < 2) {
|
||
|
cout << "usage: " << argv[0] << " <csv.ext> <output_folder> " << endl;
|
||
|
exit(1);
|
||
|
}
|
||
|
string output_folder = ".";
|
||
|
if (argc == 3) {
|
||
|
output_folder = string(argv[2]);
|
||
|
}
|
||
|
// Get the path to your CSV.
|
||
|
string fn_csv = string(argv[1]);
|
||
|
// These vectors hold the images and corresponding labels.
|
||
|
vector<Mat> images;
|
||
|
vector<int> labels;
|
||
|
// Read in the data. This can fail if no valid
|
||
|
// input filename is given.
|
||
|
try {
|
||
|
read_csv(fn_csv, images, labels);
|
||
|
} catch (const cv::Exception& e) {
|
||
|
cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
|
||
|
// nothing more we can do
|
||
|
exit(1);
|
||
|
}
|
||
|
// Quit if there are not enough images for this demo.
|
||
|
if(images.size() <= 1) {
|
||
|
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
|
||
|
CV_Error(Error::StsError, error_message);
|
||
|
}
|
||
|
// Get the height from the first image. We'll need this
|
||
|
// later in code to reshape the images to their original
|
||
|
// size:
|
||
|
int height = images[0].rows;
|
||
|
// The following lines simply get the last images from
|
||
|
// your dataset and remove it from the vector. This is
|
||
|
// done, so that the training data (which we learn the
|
||
|
// cv::BasicFaceRecognizer on) and the test data we test
|
||
|
// the model with, do not overlap.
|
||
|
Mat testSample = images[images.size() - 1];
|
||
|
int testLabel = labels[labels.size() - 1];
|
||
|
images.pop_back();
|
||
|
labels.pop_back();
|
||
|
// The following lines create an Fisherfaces model for
|
||
|
// face recognition and train it with the images and
|
||
|
// labels read from the given CSV file.
|
||
|
// If you just want to keep 10 Fisherfaces, then call
|
||
|
// the factory method like this:
|
||
|
//
|
||
|
// FisherFaceRecognizer::create(10);
|
||
|
//
|
||
|
// However it is not useful to discard Fisherfaces! Please
|
||
|
// always try to use _all_ available Fisherfaces for
|
||
|
// classification.
|
||
|
//
|
||
|
// If you want to create a FaceRecognizer with a
|
||
|
// confidence threshold (e.g. 123.0) and use _all_
|
||
|
// Fisherfaces, then call it with:
|
||
|
//
|
||
|
// FisherFaceRecognizer::create(0, 123.0);
|
||
|
//
|
||
|
Ptr<FisherFaceRecognizer> model = FisherFaceRecognizer::create();
|
||
|
model->train(images, labels);
|
||
|
// The following line predicts the label of a given
|
||
|
// test image:
|
||
|
int predictedLabel = model->predict(testSample);
|
||
|
//
|
||
|
// To get the confidence of a prediction call the model with:
|
||
|
//
|
||
|
// int predictedLabel = -1;
|
||
|
// double confidence = 0.0;
|
||
|
// model->predict(testSample, predictedLabel, confidence);
|
||
|
//
|
||
|
string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
|
||
|
cout << result_message << endl;
|
||
|
// Here is how to get the eigenvalues of this Eigenfaces model:
|
||
|
Mat eigenvalues = model->getEigenValues();
|
||
|
// And we can do the same to display the Eigenvectors (read Eigenfaces):
|
||
|
Mat W = model->getEigenVectors();
|
||
|
// Get the sample mean from the training data
|
||
|
Mat mean = model->getMean();
|
||
|
// Display or save:
|
||
|
if(argc == 2) {
|
||
|
imshow("mean", norm_0_255(mean.reshape(1, images[0].rows)));
|
||
|
} else {
|
||
|
imwrite(format("%s/mean.png", output_folder.c_str()), norm_0_255(mean.reshape(1, images[0].rows)));
|
||
|
}
|
||
|
// Display or save the first, at most 16 Fisherfaces:
|
||
|
for (int i = 0; i < min(16, W.cols); i++) {
|
||
|
string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i));
|
||
|
cout << msg << endl;
|
||
|
// get eigenvector #i
|
||
|
Mat ev = W.col(i).clone();
|
||
|
// Reshape to original size & normalize to [0...255] for imshow.
|
||
|
Mat grayscale = norm_0_255(ev.reshape(1, height));
|
||
|
// Show the image & apply a Bone colormap for better sensing.
|
||
|
Mat cgrayscale;
|
||
|
applyColorMap(grayscale, cgrayscale, COLORMAP_BONE);
|
||
|
// Display or save:
|
||
|
if(argc == 2) {
|
||
|
imshow(format("fisherface_%d", i), cgrayscale);
|
||
|
} else {
|
||
|
imwrite(format("%s/fisherface_%d.png", output_folder.c_str(), i), norm_0_255(cgrayscale));
|
||
|
}
|
||
|
}
|
||
|
// Display or save the image reconstruction at some predefined steps:
|
||
|
for(int num_component = 0; num_component < min(16, W.cols); num_component++) {
|
||
|
// Slice the Fisherface from the model:
|
||
|
Mat ev = W.col(num_component);
|
||
|
Mat projection = LDA::subspaceProject(ev, mean, images[0].reshape(1,1));
|
||
|
Mat reconstruction = LDA::subspaceReconstruct(ev, mean, projection);
|
||
|
// Normalize the result:
|
||
|
reconstruction = norm_0_255(reconstruction.reshape(1, images[0].rows));
|
||
|
// Display or save:
|
||
|
if(argc == 2) {
|
||
|
imshow(format("fisherface_reconstruction_%d", num_component), reconstruction);
|
||
|
} else {
|
||
|
imwrite(format("%s/fisherface_reconstruction_%d.png", output_folder.c_str(), num_component), reconstruction);
|
||
|
}
|
||
|
}
|
||
|
// Display if we are not writing to an output folder:
|
||
|
if(argc == 2) {
|
||
|
waitKey(0);
|
||
|
}
|
||
|
return 0;
|
||
|
}
|