172 lines
6.1 KiB
C++
172 lines
6.1 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2014, Itseez Inc, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Itseez Inc or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "opencv2/core.hpp"
|
||
|
#include "opencv2/imgcodecs.hpp"
|
||
|
#include "opencv2/datasets/fr_lfw.hpp"
|
||
|
|
||
|
#include <iostream>
|
||
|
#include <cstdio>
|
||
|
#include <string>
|
||
|
#include <vector>
|
||
|
|
||
|
using namespace std;
|
||
|
using namespace cv;
|
||
|
using namespace cv::datasets;
|
||
|
|
||
|
|
||
|
int main(int argc, const char *argv[])
|
||
|
{
|
||
|
const char *keys =
|
||
|
"{ help h usage ? | | show this message }"
|
||
|
"{ path p |true| path to dataset (lfw2 folder) }"
|
||
|
"{ train t |dev | train method: 'dev'(pairsDevTrain.txt) or 'split'(pairs.txt) }";
|
||
|
|
||
|
CommandLineParser parser(argc, argv, keys);
|
||
|
string path(parser.get<string>("path"));
|
||
|
if (parser.has("help") || path=="true")
|
||
|
{
|
||
|
parser.printMessage();
|
||
|
return -1;
|
||
|
}
|
||
|
string trainMethod(parser.get<string>("train"));
|
||
|
|
||
|
// our trained threshold for "same":
|
||
|
double threshold = 0;
|
||
|
|
||
|
// load dataset
|
||
|
Ptr<FR_lfw> dataset = FR_lfw::create();
|
||
|
dataset->load(path);
|
||
|
|
||
|
unsigned int numSplits = dataset->getNumSplits();
|
||
|
printf("splits number: %u\n", numSplits);
|
||
|
if (trainMethod == "dev")
|
||
|
printf("train size: %u\n", (unsigned int)dataset->getTrain().size());
|
||
|
else
|
||
|
printf("train size: %u\n", (numSplits-1) * (unsigned int)dataset->getTest().size());
|
||
|
printf("test size: %u\n", (unsigned int)dataset->getTest().size());
|
||
|
|
||
|
|
||
|
if (trainMethod == "dev") // train on personsDevTrain.txt
|
||
|
{
|
||
|
// collect average same-distances:
|
||
|
double avg = 0;
|
||
|
int count = 0;
|
||
|
for (unsigned int i=0; i<dataset->getTrain().size(); ++i)
|
||
|
{
|
||
|
FR_lfwObj *example = static_cast<FR_lfwObj *>(dataset->getTrain()[i].get());
|
||
|
|
||
|
Mat a = imread(path+example->image1, IMREAD_GRAYSCALE);
|
||
|
Mat b = imread(path+example->image2, IMREAD_GRAYSCALE);
|
||
|
double dist = norm(a,b);
|
||
|
if (example->same)
|
||
|
{
|
||
|
avg += dist;
|
||
|
count ++;
|
||
|
}
|
||
|
}
|
||
|
threshold = avg / count;
|
||
|
}
|
||
|
|
||
|
vector<double> p;
|
||
|
for (unsigned int j=0; j<numSplits; ++j)
|
||
|
{
|
||
|
if (trainMethod == "split") // train on the remaining 9 splits from pairs.txt
|
||
|
{
|
||
|
double avg = 0;
|
||
|
int count = 0;
|
||
|
for (unsigned int j2=0; j2<numSplits; ++j2)
|
||
|
{
|
||
|
if (j==j2) continue; // skip test split for training
|
||
|
|
||
|
vector < Ptr<Object> > &curr = dataset->getTest(j2);
|
||
|
for (unsigned int i=0; i<curr.size(); ++i)
|
||
|
{
|
||
|
FR_lfwObj *example = static_cast<FR_lfwObj *>(curr[i].get());
|
||
|
Mat a = imread(path+example->image1, IMREAD_GRAYSCALE);
|
||
|
Mat b = imread(path+example->image2, IMREAD_GRAYSCALE);
|
||
|
double dist = norm(a,b);
|
||
|
if (example->same)
|
||
|
{
|
||
|
avg += dist;
|
||
|
count ++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
threshold = avg / count;
|
||
|
}
|
||
|
|
||
|
unsigned int incorrect = 0, correct = 0;
|
||
|
vector < Ptr<Object> > &curr = dataset->getTest(j);
|
||
|
for (unsigned int i=0; i<curr.size(); ++i)
|
||
|
{
|
||
|
FR_lfwObj *example = static_cast<FR_lfwObj *>(curr[i].get());
|
||
|
|
||
|
Mat a = imread(path+example->image1, IMREAD_GRAYSCALE);
|
||
|
Mat b = imread(path+example->image2, IMREAD_GRAYSCALE);
|
||
|
bool same = (norm(a,b) <= threshold);
|
||
|
if (same == example->same)
|
||
|
correct++;
|
||
|
else
|
||
|
incorrect++;
|
||
|
}
|
||
|
p.push_back(1.0*correct/(correct+incorrect));
|
||
|
printf("correct: %u, from: %u -> %f\n", correct, correct+incorrect, p.back());
|
||
|
}
|
||
|
|
||
|
double mu = 0.0;
|
||
|
for (vector<double>::iterator it=p.begin(); it!=p.end(); ++it)
|
||
|
{
|
||
|
mu += *it;
|
||
|
}
|
||
|
mu /= p.size();
|
||
|
double sigma = 0.0;
|
||
|
for (vector<double>::iterator it=p.begin(); it!=p.end(); ++it)
|
||
|
{
|
||
|
sigma += (*it - mu)*(*it - mu);
|
||
|
}
|
||
|
sigma = sqrt(sigma/p.size());
|
||
|
double se = sigma/sqrt(double(p.size()));
|
||
|
printf("estimated mean accuracy: %f and the standard error of the mean: %f\n", mu, se);
|
||
|
|
||
|
return 0;
|
||
|
}
|