177 lines
5.5 KiB
C++
177 lines
5.5 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "test_precomp.hpp"
|
||
|
|
||
|
#ifdef HAVE_CUDA
|
||
|
|
||
|
namespace opencv_test { namespace {
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// MeanShift
|
||
|
|
||
|
struct MeanShift : testing::TestWithParam<cv::cuda::DeviceInfo>
|
||
|
{
|
||
|
cv::cuda::DeviceInfo devInfo;
|
||
|
|
||
|
cv::Mat img;
|
||
|
|
||
|
int spatialRad;
|
||
|
int colorRad;
|
||
|
|
||
|
virtual void SetUp()
|
||
|
{
|
||
|
devInfo = GetParam();
|
||
|
|
||
|
cv::cuda::setDevice(devInfo.deviceID());
|
||
|
|
||
|
img = readImageType("meanshift/cones.png", CV_8UC4);
|
||
|
ASSERT_FALSE(img.empty());
|
||
|
|
||
|
spatialRad = 30;
|
||
|
colorRad = 30;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
CUDA_TEST_P(MeanShift, Filtering)
|
||
|
{
|
||
|
cv::Mat img_template;
|
||
|
if (supportFeature(devInfo, cv::cuda::FEATURE_SET_COMPUTE_20))
|
||
|
img_template = readImage("meanshift/con_result.png");
|
||
|
else
|
||
|
img_template = readImage("meanshift/con_result_CC1X.png");
|
||
|
ASSERT_FALSE(img_template.empty());
|
||
|
|
||
|
cv::cuda::GpuMat d_dst;
|
||
|
cv::cuda::meanShiftFiltering(loadMat(img), d_dst, spatialRad, colorRad);
|
||
|
|
||
|
ASSERT_EQ(CV_8UC4, d_dst.type());
|
||
|
|
||
|
cv::Mat dst(d_dst);
|
||
|
|
||
|
cv::Mat result;
|
||
|
cv::cvtColor(dst, result, cv::COLOR_BGRA2BGR);
|
||
|
|
||
|
EXPECT_MAT_NEAR(img_template, result, 0.0);
|
||
|
}
|
||
|
|
||
|
CUDA_TEST_P(MeanShift, Proc)
|
||
|
{
|
||
|
cv::FileStorage fs;
|
||
|
if (supportFeature(devInfo, cv::cuda::FEATURE_SET_COMPUTE_20))
|
||
|
fs.open(std::string(cvtest::TS::ptr()->get_data_path()) + "meanshift/spmap.yaml", cv::FileStorage::READ);
|
||
|
else
|
||
|
fs.open(std::string(cvtest::TS::ptr()->get_data_path()) + "meanshift/spmap_CC1X.yaml", cv::FileStorage::READ);
|
||
|
ASSERT_TRUE(fs.isOpened());
|
||
|
|
||
|
cv::Mat spmap_template;
|
||
|
fs["spmap"] >> spmap_template;
|
||
|
ASSERT_FALSE(spmap_template.empty());
|
||
|
|
||
|
cv::cuda::GpuMat rmap_filtered;
|
||
|
cv::cuda::meanShiftFiltering(loadMat(img), rmap_filtered, spatialRad, colorRad);
|
||
|
|
||
|
cv::cuda::GpuMat rmap;
|
||
|
cv::cuda::GpuMat spmap;
|
||
|
cv::cuda::meanShiftProc(loadMat(img), rmap, spmap, spatialRad, colorRad);
|
||
|
|
||
|
ASSERT_EQ(CV_8UC4, rmap.type());
|
||
|
|
||
|
EXPECT_MAT_NEAR(rmap_filtered, rmap, 0.0);
|
||
|
EXPECT_MAT_NEAR(spmap_template, spmap, 0.0);
|
||
|
}
|
||
|
|
||
|
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, MeanShift, ALL_DEVICES);
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// MeanShiftSegmentation
|
||
|
|
||
|
namespace
|
||
|
{
|
||
|
IMPLEMENT_PARAM_CLASS(MinSize, int);
|
||
|
}
|
||
|
|
||
|
PARAM_TEST_CASE(MeanShiftSegmentation, cv::cuda::DeviceInfo, MinSize)
|
||
|
{
|
||
|
cv::cuda::DeviceInfo devInfo;
|
||
|
int minsize;
|
||
|
|
||
|
virtual void SetUp()
|
||
|
{
|
||
|
devInfo = GET_PARAM(0);
|
||
|
minsize = GET_PARAM(1);
|
||
|
|
||
|
cv::cuda::setDevice(devInfo.deviceID());
|
||
|
}
|
||
|
};
|
||
|
|
||
|
CUDA_TEST_P(MeanShiftSegmentation, Regression)
|
||
|
{
|
||
|
cv::Mat img = readImageType("meanshift/cones.png", CV_8UC4);
|
||
|
ASSERT_FALSE(img.empty());
|
||
|
|
||
|
std::ostringstream path;
|
||
|
path << "meanshift/cones_segmented_sp10_sr10_minsize" << minsize;
|
||
|
if (supportFeature(devInfo, cv::cuda::FEATURE_SET_COMPUTE_20))
|
||
|
path << ".png";
|
||
|
else
|
||
|
path << "_CC1X.png";
|
||
|
cv::Mat dst_gold = readImage(path.str());
|
||
|
ASSERT_FALSE(dst_gold.empty());
|
||
|
|
||
|
cv::Mat dst;
|
||
|
cv::cuda::meanShiftSegmentation(loadMat(img), dst, 10, 10, minsize);
|
||
|
|
||
|
cv::Mat dst_rgb;
|
||
|
cv::cvtColor(dst, dst_rgb, cv::COLOR_BGRA2BGR);
|
||
|
|
||
|
EXPECT_MAT_SIMILAR(dst_gold, dst_rgb, 1e-3);
|
||
|
}
|
||
|
|
||
|
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, MeanShiftSegmentation, testing::Combine(
|
||
|
ALL_DEVICES,
|
||
|
testing::Values(MinSize(0), MinSize(4), MinSize(20), MinSize(84), MinSize(340), MinSize(1364))));
|
||
|
|
||
|
|
||
|
}} // namespace
|
||
|
#endif // HAVE_CUDA
|