179 lines
5.4 KiB
C++
179 lines
5.4 KiB
C++
|
// This file is part of OpenCV project.
|
||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||
|
// of this distribution and at http://opencv.org/license.html.
|
||
|
#include "test_precomp.hpp"
|
||
|
|
||
|
namespace opencv_test {
|
||
|
Ptr<AdaptiveManifoldFilter> createAMFilterRefImpl(double sigma_s, double sigma_r, bool adjust_outliers = false);
|
||
|
namespace {
|
||
|
|
||
|
#ifndef SQR
|
||
|
#define SQR(x) ((x)*(x))
|
||
|
#endif
|
||
|
|
||
|
static string getOpenCVExtraDir()
|
||
|
{
|
||
|
return cvtest::TS::ptr()->get_data_path();
|
||
|
}
|
||
|
|
||
|
static void checkSimilarity(InputArray res, InputArray ref, double maxNormInf = 1, double maxNormL2 = 1.0 / 64)
|
||
|
{
|
||
|
double normInf = cvtest::norm(res, ref, NORM_INF);
|
||
|
double normL2 = cvtest::norm(res, ref, NORM_L2) / res.total();
|
||
|
|
||
|
if (maxNormInf >= 0) { EXPECT_LE(normInf, maxNormInf); }
|
||
|
if (maxNormL2 >= 0) { EXPECT_LE(normL2, maxNormL2); }
|
||
|
}
|
||
|
|
||
|
TEST(AdaptiveManifoldTest, SplatSurfaceAccuracy)
|
||
|
{
|
||
|
RNG rnd(0);
|
||
|
|
||
|
for (int i = 0; i < 5; i++)
|
||
|
{
|
||
|
Size sz(rnd.uniform(512, 1024), rnd.uniform(512, 1024));
|
||
|
|
||
|
int guideCn = rnd.uniform(1, 8);
|
||
|
Mat guide(sz, CV_MAKE_TYPE(CV_32F, guideCn));
|
||
|
randu(guide, 0, 1);
|
||
|
|
||
|
Scalar surfaceValue;
|
||
|
int srcCn = rnd.uniform(1, 4);
|
||
|
rnd.fill(surfaceValue, RNG::UNIFORM, 0, 255);
|
||
|
Mat src(sz, CV_MAKE_TYPE(CV_8U, srcCn), surfaceValue);
|
||
|
|
||
|
double sigma_s = rnd.uniform(1.0, 50.0);
|
||
|
double sigma_r = rnd.uniform(0.1, 0.9);
|
||
|
|
||
|
Mat res;
|
||
|
amFilter(guide, src, res, sigma_s, sigma_r, false);
|
||
|
|
||
|
double normInf = cvtest::norm(src, res, NORM_INF);
|
||
|
EXPECT_EQ(normInf, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
TEST(AdaptiveManifoldTest, AuthorsReferenceAccuracy)
|
||
|
{
|
||
|
String srcImgPath = "cv/edgefilter/kodim23.png";
|
||
|
|
||
|
String refPaths[] =
|
||
|
{
|
||
|
"cv/edgefilter/amf/kodim23_amf_ss5_sr0.3_ref.png",
|
||
|
"cv/edgefilter/amf/kodim23_amf_ss30_sr0.1_ref.png",
|
||
|
"cv/edgefilter/amf/kodim23_amf_ss50_sr0.3_ref.png"
|
||
|
};
|
||
|
|
||
|
pair<double, double> refParams[] =
|
||
|
{
|
||
|
make_pair(5.0, 0.3),
|
||
|
make_pair(30.0, 0.1),
|
||
|
make_pair(50.0, 0.3)
|
||
|
};
|
||
|
|
||
|
String refOutliersPaths[] =
|
||
|
{
|
||
|
"cv/edgefilter/amf/kodim23_amf_ss5_sr0.1_outliers_ref.png",
|
||
|
"cv/edgefilter/amf/kodim23_amf_ss15_sr0.3_outliers_ref.png",
|
||
|
"cv/edgefilter/amf/kodim23_amf_ss50_sr0.5_outliers_ref.png"
|
||
|
};
|
||
|
|
||
|
pair<double, double> refOutliersParams[] =
|
||
|
{
|
||
|
make_pair(5.0, 0.1),
|
||
|
make_pair(15.0, 0.3),
|
||
|
make_pair(50.0, 0.5),
|
||
|
};
|
||
|
|
||
|
Mat srcImg = imread(getOpenCVExtraDir() + srcImgPath);
|
||
|
ASSERT_TRUE(!srcImg.empty());
|
||
|
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
Mat refRes = imread(getOpenCVExtraDir() + refPaths[i]);
|
||
|
double sigma_s = refParams[i].first;
|
||
|
double sigma_r = refParams[i].second;
|
||
|
ASSERT_TRUE(!refRes.empty());
|
||
|
|
||
|
Mat res;
|
||
|
Ptr<AdaptiveManifoldFilter> amf = createAMFilter(sigma_s, sigma_r, false);
|
||
|
amf->setUseRNG(false);
|
||
|
amf->filter(srcImg, res, srcImg);
|
||
|
amf->collectGarbage();
|
||
|
|
||
|
checkSimilarity(res, refRes);
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
Mat refRes = imread(getOpenCVExtraDir() + refOutliersPaths[i]);
|
||
|
double sigma_s = refOutliersParams[i].first;
|
||
|
double sigma_r = refOutliersParams[i].second;
|
||
|
ASSERT_TRUE(!refRes.empty());
|
||
|
|
||
|
Mat res;
|
||
|
Ptr<AdaptiveManifoldFilter> amf = createAMFilter(sigma_s, sigma_r, true);
|
||
|
amf->setUseRNG(false);
|
||
|
amf->filter(srcImg, res, srcImg);
|
||
|
amf->collectGarbage();
|
||
|
|
||
|
checkSimilarity(res, refRes);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
typedef tuple<string, string> AMRefTestParams;
|
||
|
typedef TestWithParam<AMRefTestParams> AdaptiveManifoldRefImplTest;
|
||
|
|
||
|
TEST_P(AdaptiveManifoldRefImplTest, RefImplAccuracy)
|
||
|
{
|
||
|
AMRefTestParams params = GetParam();
|
||
|
|
||
|
string guideFileName = get<0>(params);
|
||
|
string srcFileName = get<1>(params);
|
||
|
|
||
|
Mat guide = imread(getOpenCVExtraDir() + guideFileName);
|
||
|
Mat src = imread(getOpenCVExtraDir() + srcFileName);
|
||
|
ASSERT_TRUE(!guide.empty() && !src.empty());
|
||
|
|
||
|
int seed = 10 * (int)guideFileName.length() + (int)srcFileName.length();
|
||
|
RNG rnd(seed);
|
||
|
|
||
|
//inconsistent downsample/upsample operations in reference implementation
|
||
|
Size dstSize((guide.cols + 15) & ~15, (guide.rows + 15) & ~15);
|
||
|
|
||
|
resize(guide, guide, dstSize, 0, 0, INTER_LINEAR_EXACT);
|
||
|
resize(src, src, dstSize, 0, 0, INTER_LINEAR_EXACT);
|
||
|
|
||
|
int nThreads = cv::getNumThreads();
|
||
|
if (nThreads == 1)
|
||
|
throw SkipTestException("Single thread environment");
|
||
|
for (int iter = 0; iter < 4; iter++)
|
||
|
{
|
||
|
double sigma_s = rnd.uniform(1.0, 50.0);
|
||
|
double sigma_r = rnd.uniform(0.1, 0.9);
|
||
|
bool adjust_outliers = (iter % 2 == 0);
|
||
|
|
||
|
cv::setNumThreads(nThreads);
|
||
|
Mat res;
|
||
|
amFilter(guide, src, res, sigma_s, sigma_r, adjust_outliers);
|
||
|
|
||
|
cv::setNumThreads(1);
|
||
|
Mat resRef;
|
||
|
Ptr<AdaptiveManifoldFilter> amf = createAMFilterRefImpl(sigma_s, sigma_r, adjust_outliers);
|
||
|
amf->filter(src, resRef, guide);
|
||
|
|
||
|
//results of reference implementation may differ on small sigma_s into small isolated region
|
||
|
//due to low single-precision floating point numbers accuracy
|
||
|
//therefore the threshold of inf norm was increased
|
||
|
checkSimilarity(res, resRef, 25);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
INSTANTIATE_TEST_CASE_P(TypicalSet, AdaptiveManifoldRefImplTest,
|
||
|
Combine(
|
||
|
Values("cv/edgefilter/kodim23.png", "cv/npr/test4.png"),
|
||
|
Values("cv/edgefilter/kodim23.png", "cv/npr/test4.png")
|
||
|
));
|
||
|
|
||
|
|
||
|
}} // namespace
|