466 lines
17 KiB
C++
466 lines
17 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// Intel License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "test_precomp.hpp"
|
||
|
|
||
|
namespace opencv_test { namespace {
|
||
|
|
||
|
class CV_DescriptorBaseTest : public cvtest::BaseTest
|
||
|
{
|
||
|
public:
|
||
|
CV_DescriptorBaseTest();
|
||
|
~CV_DescriptorBaseTest();
|
||
|
protected:
|
||
|
virtual void imageTransformation(const Mat &img1, const Mat &img2, Mat &out1, Mat &out2) = 0;
|
||
|
virtual void imageTransformation(const Mat &img1, Mat &out1) = 0;
|
||
|
void testROI(const Mat &img);
|
||
|
void testMonotonicity(const Mat &img, Mat &out);
|
||
|
void run(int );
|
||
|
Mat censusImage[2];
|
||
|
Mat censusImageSingle[2];
|
||
|
Mat left;
|
||
|
Mat right;
|
||
|
int kernel_size, descriptor_type;
|
||
|
};
|
||
|
//we test to see if the descriptor applied on a roi
|
||
|
//has the same value with the descriptor from the original image
|
||
|
//tested at the roi boundaries
|
||
|
void CV_DescriptorBaseTest::testROI(const Mat &img)
|
||
|
{
|
||
|
int pt, pb,w,h;
|
||
|
//initialize random values for the roi top and bottom
|
||
|
pt = rand() % 100;
|
||
|
pb = rand() % 100;
|
||
|
//calculate the new width and height
|
||
|
w = img.cols;
|
||
|
h = img.rows - pt - pb;
|
||
|
int start = pt + kernel_size / 2 + 1;
|
||
|
int stop = h - kernel_size/2 - 1;
|
||
|
//set the region of interest according to above values
|
||
|
Rect region_of_interest = Rect(0, pt, w, h);
|
||
|
Mat image_roi1 = img(region_of_interest);
|
||
|
Mat p1,p2;
|
||
|
//create 2 images where to put our output
|
||
|
p1.create(image_roi1.rows, image_roi1.cols, CV_32SC4);
|
||
|
p2.create(img.rows, img.cols, CV_32SC4);
|
||
|
imageTransformation(image_roi1,p1);
|
||
|
imageTransformation(img,p2);
|
||
|
int *roi_data = (int *)p1.data;
|
||
|
int *img_data = (int *)p2.data;
|
||
|
//verify result
|
||
|
for(int i = start; i < stop; i++)
|
||
|
{
|
||
|
for(int j = 0; j < w ; j++)
|
||
|
{
|
||
|
if(roi_data[(i - pt) * w + j] != img_data[(i) * w + j])
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Something wrong with ROI \n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|
||
|
CV_DescriptorBaseTest::~CV_DescriptorBaseTest()
|
||
|
{
|
||
|
left.release();
|
||
|
right.release();
|
||
|
censusImage[0].release();
|
||
|
censusImage[1].release();
|
||
|
censusImageSingle[0].release();
|
||
|
censusImageSingle[1].release();
|
||
|
}
|
||
|
CV_DescriptorBaseTest::CV_DescriptorBaseTest()
|
||
|
{
|
||
|
//read 2 images from file
|
||
|
left = imread(ts->get_data_path() + "stereomatching/datasets/tsukuba/im2.png", IMREAD_GRAYSCALE);
|
||
|
right = imread(ts->get_data_path() + "stereomatching/datasets/tsukuba/im6.png", IMREAD_GRAYSCALE);
|
||
|
|
||
|
if(left.empty() || right.empty())
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Wrong input data \n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return;
|
||
|
}
|
||
|
ts->printf(cvtest::TS::LOG, "Data loaded \n");
|
||
|
}
|
||
|
//verify if we don't have an image with all pixels the same( except when all input pixels are equal)
|
||
|
void CV_DescriptorBaseTest::testMonotonicity(const Mat &img, Mat &out)
|
||
|
{
|
||
|
//verify if input data is correct
|
||
|
if(img.rows != out.rows || img.cols != out.cols || img.empty() || out.empty())
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Wrong input / output dimension \n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return;
|
||
|
}
|
||
|
//verify that for an input image with different pxels the values of the
|
||
|
//output pixels are not the same
|
||
|
int same = 0;
|
||
|
uint8_t *data = img.data;
|
||
|
uint8_t val = data[1];
|
||
|
int stride = (int)img.step;
|
||
|
for(int i = 0 ; i < img.rows && !same; i++)
|
||
|
{
|
||
|
for(int j = 0; j < img.cols; j++)
|
||
|
{
|
||
|
if(val != data[i * stride + j])
|
||
|
{
|
||
|
same = 1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
int value_descript = out.data[1];
|
||
|
int accept = 0;
|
||
|
uint8_t *outData = out.data;
|
||
|
for(int i = 0 ; i < img.rows && !accept; i++)
|
||
|
{
|
||
|
for(int j = 0; j < img.cols; j++)
|
||
|
{
|
||
|
//we verify for the output image if the iage pixels are not all the same of an input
|
||
|
//image with different pixels
|
||
|
if(value_descript != outData[i * stride + j] && same)
|
||
|
{
|
||
|
//if we found a value that is different we accept
|
||
|
accept = 1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if(accept == 1 && same == 0)
|
||
|
{
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
ts->printf(cvtest::TS::LOG, "The image has all values the same \n");
|
||
|
return;
|
||
|
}
|
||
|
if(accept == 0 && same == 1)
|
||
|
{
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
ts->printf(cvtest::TS::LOG, "For correct image we get all descriptor values the same \n");
|
||
|
return;
|
||
|
}
|
||
|
ts->set_failed_test_info(cvtest::TS::OK);
|
||
|
}
|
||
|
|
||
|
///////////////////////////////////
|
||
|
//census transform
|
||
|
|
||
|
class CV_CensusTransformTest: public CV_DescriptorBaseTest
|
||
|
{
|
||
|
public:
|
||
|
CV_CensusTransformTest();
|
||
|
protected:
|
||
|
void imageTransformation(const Mat &img1, const Mat &img2, Mat &out1, Mat &out2);
|
||
|
void imageTransformation(const Mat &img1, Mat &out1);
|
||
|
};
|
||
|
|
||
|
CV_CensusTransformTest::CV_CensusTransformTest()
|
||
|
{
|
||
|
kernel_size = 11;
|
||
|
descriptor_type = CV_SPARSE_CENSUS;
|
||
|
}
|
||
|
void CV_CensusTransformTest::imageTransformation(const Mat &img1, const Mat &img2, Mat &out1, Mat &out2)
|
||
|
{
|
||
|
//verify if input data is correct
|
||
|
if(img1.rows != out1.rows || img1.cols != out1.cols || img1.empty() || out1.empty()
|
||
|
|| img2.rows != out2.rows || img2.cols != out2.cols || img2.empty() || out2.empty())
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Wrong input / output data \n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return;
|
||
|
}
|
||
|
if(kernel_size % 2 == 0)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Wrong kernel size;Kernel should be odd \n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return;
|
||
|
}
|
||
|
censusTransform(img1,img2,kernel_size,out1,out2,descriptor_type);
|
||
|
|
||
|
}
|
||
|
void CV_CensusTransformTest::imageTransformation(const Mat &img1, Mat &out1)
|
||
|
{
|
||
|
//verify if input data is correct
|
||
|
if(img1.rows != out1.rows || img1.cols != out1.cols || img1.empty() || out1.empty())
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Wrong input / output data \n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return;
|
||
|
}
|
||
|
if(kernel_size % 2 == 0)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Wrong kernel size;Kernel should be odd \n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return;
|
||
|
}
|
||
|
censusTransform(img1,kernel_size,out1,descriptor_type);
|
||
|
}
|
||
|
//////////////////////////////////
|
||
|
//symetric census
|
||
|
|
||
|
class CV_SymetricCensusTest: public CV_DescriptorBaseTest
|
||
|
{
|
||
|
public:
|
||
|
CV_SymetricCensusTest();
|
||
|
protected:
|
||
|
void imageTransformation(const Mat &img1, const Mat &img2, Mat &out1, Mat &out2);
|
||
|
void imageTransformation(const Mat &img1, Mat &out1);
|
||
|
};
|
||
|
CV_SymetricCensusTest::CV_SymetricCensusTest()
|
||
|
{
|
||
|
kernel_size = 7;
|
||
|
descriptor_type = CV_CS_CENSUS;
|
||
|
}
|
||
|
void CV_SymetricCensusTest::imageTransformation(const Mat &img1, const Mat &img2, Mat &out1, Mat &out2)
|
||
|
{
|
||
|
//verify if input data is correct
|
||
|
if(img1.rows != out1.rows || img1.cols != out1.cols || img1.empty() || out1.empty()
|
||
|
|| img2.rows != out2.rows || img2.cols != out2.cols || img2.empty() || out2.empty())
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Wrong input / output data \n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return;
|
||
|
}
|
||
|
if(kernel_size % 2 == 0)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Wrong kernel size;Kernel should be odd \n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return;
|
||
|
}
|
||
|
symetricCensusTransform(img1,img2,kernel_size,out1,out2,descriptor_type);
|
||
|
}
|
||
|
void CV_SymetricCensusTest::imageTransformation(const Mat &img1, Mat &out1)
|
||
|
{
|
||
|
//verify if input data is correct
|
||
|
if(img1.rows != out1.rows || img1.cols != out1.cols || img1.empty() || out1.empty())
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Wrong input / output data \n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return;
|
||
|
}
|
||
|
if(kernel_size % 2 == 0)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Wrong kernel size;Kernel should be odd \n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return;
|
||
|
}
|
||
|
symetricCensusTransform(img1,kernel_size,out1,descriptor_type);
|
||
|
}
|
||
|
//////////////////////////////////
|
||
|
//modified census transform
|
||
|
class CV_ModifiedCensusTransformTest: public CV_DescriptorBaseTest
|
||
|
{
|
||
|
public:
|
||
|
CV_ModifiedCensusTransformTest();
|
||
|
protected:
|
||
|
void imageTransformation(const Mat &img1, const Mat &img2, Mat &out1, Mat &out2);
|
||
|
void imageTransformation(const Mat &img1, Mat &out1);
|
||
|
};
|
||
|
CV_ModifiedCensusTransformTest::CV_ModifiedCensusTransformTest()
|
||
|
{
|
||
|
kernel_size = 9;
|
||
|
descriptor_type = CV_MODIFIED_CENSUS_TRANSFORM;
|
||
|
}
|
||
|
void CV_ModifiedCensusTransformTest::imageTransformation(const Mat &img1, const Mat &img2, Mat &out1, Mat &out2)
|
||
|
{
|
||
|
//verify if input data is correct
|
||
|
if(img1.rows != out1.rows || img1.cols != out1.cols || img1.empty() || out1.empty()
|
||
|
|| img2.rows != out2.rows || img2.cols != out2.cols || img2.empty() || out2.empty())
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Wrong input / output data \n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return;
|
||
|
}
|
||
|
if(kernel_size % 2 == 0)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Wrong kernel size;Kernel should be odd \n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return;
|
||
|
}
|
||
|
modifiedCensusTransform(img1,img2,kernel_size,out1,out2,descriptor_type);
|
||
|
}
|
||
|
void CV_ModifiedCensusTransformTest::imageTransformation(const Mat &img1, Mat &out1)
|
||
|
{
|
||
|
if(img1.rows != out1.rows || img1.cols != out1.cols || img1.empty() || out1.empty())
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Wrong input / output data \n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return;
|
||
|
}
|
||
|
if(kernel_size % 2 == 0)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Wrong kernel size;Kernel should be odd \n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return;
|
||
|
}
|
||
|
modifiedCensusTransform(img1,kernel_size,out1,descriptor_type);
|
||
|
}
|
||
|
//////////////////////////////////
|
||
|
//star kernel census
|
||
|
class CV_StarKernelCensusTest: public CV_DescriptorBaseTest
|
||
|
{
|
||
|
public:
|
||
|
CV_StarKernelCensusTest();
|
||
|
protected:
|
||
|
void imageTransformation(const Mat &img1, const Mat &img2, Mat &out1, Mat &out2);
|
||
|
void imageTransformation(const Mat &img1, Mat &out1);
|
||
|
};
|
||
|
CV_StarKernelCensusTest :: CV_StarKernelCensusTest()
|
||
|
{
|
||
|
kernel_size = 9;
|
||
|
descriptor_type = CV_STAR_KERNEL;
|
||
|
}
|
||
|
void CV_StarKernelCensusTest :: imageTransformation(const Mat &img1, const Mat &img2, Mat &out1, Mat &out2)
|
||
|
{
|
||
|
//verify if input data is correct
|
||
|
if(img1.rows != out1.rows || img1.cols != out1.cols || img1.empty() || out1.empty()
|
||
|
|| img2.rows != out2.rows || img2.cols != out2.cols || img2.empty() || out2.empty())
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Wrong input / output data \n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return;
|
||
|
}
|
||
|
if(kernel_size % 2 == 0)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Wrong kernel size;Kernel should be odd \n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return;
|
||
|
}
|
||
|
starCensusTransform(img1,img2,kernel_size,out1,out2);
|
||
|
}
|
||
|
void CV_StarKernelCensusTest::imageTransformation(const Mat &img1, Mat &out1)
|
||
|
{
|
||
|
if(img1.rows != out1.rows || img1.cols != out1.cols || img1.empty() || out1.empty())
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Wrong input / output data \n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return;
|
||
|
}
|
||
|
if(kernel_size % 2 == 0)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Wrong kernel size;Kernel should be odd \n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return;
|
||
|
}
|
||
|
starCensusTransform(img1,kernel_size,out1);
|
||
|
}
|
||
|
|
||
|
void CV_DescriptorBaseTest::run(int )
|
||
|
{
|
||
|
if (left.empty() || right.empty())
|
||
|
{
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
ts->printf(cvtest::TS::LOG, "No input images detected\n");
|
||
|
return;
|
||
|
}
|
||
|
testROI(left);
|
||
|
|
||
|
censusImage[0].create(left.rows, left.cols, CV_32SC4);
|
||
|
censusImage[1].create(left.rows, left.cols, CV_32SC4);
|
||
|
censusImageSingle[0].create(left.rows, left.cols, CV_32SC4);
|
||
|
censusImageSingle[1].create(left.rows, left.cols, CV_32SC4);
|
||
|
censusImage[0].setTo(0);
|
||
|
censusImage[1].setTo(0);
|
||
|
censusImageSingle[0].setTo(0);
|
||
|
censusImageSingle[1].setTo(0);
|
||
|
|
||
|
imageTransformation(left, right, censusImage[0], censusImage[1]);
|
||
|
imageTransformation(left, censusImageSingle[0]);
|
||
|
imageTransformation(right, censusImageSingle[1]);
|
||
|
testMonotonicity(left,censusImage[0]);
|
||
|
testMonotonicity(right,censusImage[1]);
|
||
|
testMonotonicity(left,censusImageSingle[0]);
|
||
|
testMonotonicity(right,censusImageSingle[1]);
|
||
|
|
||
|
if (censusImage[0].empty() || censusImage[1].empty() || censusImageSingle[0].empty() || censusImageSingle[1].empty())
|
||
|
{
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
ts->printf(cvtest::TS::LOG, "The descriptor images are empty \n");
|
||
|
return;
|
||
|
}
|
||
|
int *datl1 = (int *)censusImage[0].data;
|
||
|
int *datr1 = (int *)censusImage[1].data;
|
||
|
int *datl2 = (int *)censusImageSingle[0].data;
|
||
|
int *datr2 = (int *)censusImageSingle[1].data;
|
||
|
for(int i = 0; i < censusImage[0].rows - kernel_size/ 2; i++)
|
||
|
{
|
||
|
for(int j = 0; j < censusImage[0].cols; j++)
|
||
|
{
|
||
|
if(datl1[i * censusImage[0].cols + j] != datl2[i * censusImage[0].cols + j])
|
||
|
{
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
ts->printf(cvtest::TS::LOG, "Mismatch for left images %d \n",descriptor_type);
|
||
|
return;
|
||
|
}
|
||
|
if(datr1[i * censusImage[0].cols + j] != datr2[i * censusImage[0].cols + j])
|
||
|
{
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
ts->printf(cvtest::TS::LOG, "Mismatch for right images %d \n",descriptor_type);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
int min = std::numeric_limits<int>::min();
|
||
|
int max = std::numeric_limits<int>::max();
|
||
|
//check if all values are between int min and int max and not NAN
|
||
|
if (0 != cvtest::check(censusImage[0], min, max, 0))
|
||
|
{
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return;
|
||
|
}
|
||
|
//check if all values are between int min and int max and not NAN
|
||
|
if (0 != cvtest::check(censusImage[1], min, max, 0))
|
||
|
{
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return ;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
TEST(DISABLED_census_transform_testing, accuracy) { CV_CensusTransformTest test; test.safe_run(); }
|
||
|
TEST(DISABLED_symetric_census_testing, accuracy) { CV_SymetricCensusTest test; test.safe_run(); }
|
||
|
TEST(DISABLED_Dmodified_census_testing, accuracy) { CV_ModifiedCensusTransformTest test; test.safe_run(); }
|
||
|
TEST(DISABLED_Dstar_kernel_testing, accuracy) { CV_StarKernelCensusTest test; test.safe_run(); }
|
||
|
|
||
|
|
||
|
}} // namespace
|