OpenCV_4.2.0/opencv_contrib-4.2.0/modules/sfm/test/scene.cpp

122 lines
4.2 KiB
C++
Raw Normal View History

2024-07-25 16:47:56 +08:00
/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2009, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <opencv2/calib3d.hpp>
#include <opencv2/core.hpp>
#include "test_precomp.hpp"
static cv::Matx33d randomK(bool is_projective)
{
static cv::RNG rng;
cv::Matx33d K = cv::Matx33d::zeros();
K(0, 0) = rng.uniform(100, 1000);
K(1, 1) = rng.uniform(100, 1000);
if (is_projective)
{
K(0, 2) = rng.uniform(-100, 100);
K(1, 2) = rng.uniform(-100, 100);
}
K(2, 2) = 1.0;
return K;
}
void
generateScene(size_t n_views, size_t n_points, bool is_projective, cv::Matx33d & K, std::vector<cv::Matx33d> & R,
std::vector<cv::Vec3d> & t, std::vector<cv::Matx34d> & P, cv::Mat_<double> & points3d,
std::vector<cv::Mat_<double> > & points2d)
{
R.resize(n_views);
t.resize(n_views);
cv::RNG rng;
// Generate a bunch of random 3d points in a 0, 1 cube
points3d.create(3, n_points);
rng.fill(points3d, cv::RNG::UNIFORM, 0, 1);
// Generate random intrinsics
K = randomK(is_projective);
// Generate random camera poses
// TODO deal with smooth camera poses (e.g. from a video sequence)
for (size_t i = 0; i < n_views; ++i)
{
// Get a random rotation axis
cv::Vec3d vec;
rng.fill(vec, cv::RNG::UNIFORM, 0, 1);
// Give a random angle to the rotation vector
vec = vec / cv::norm(vec) * rng.uniform(0.0f, float(2 * CV_PI));
cv::Rodrigues(vec, R[i]);
// Create a random translation
t[i] = cv::Vec3d(rng.uniform(-0.5f, 0.5f), rng.uniform(-0.5f, 0.5f), rng.uniform(1.0f, 2.0f));
// Make sure the shape is in front of the camera
cv::Mat_<double> points3d_transformed = cv::Mat(R[i]) * points3d + cv::Mat(t[i]) * cv::Mat_<double> ::ones(1, n_points);
double min_dist, max_dist;
cv::minMaxIdx(points3d_transformed.row(2), &min_dist, &max_dist);
if (min_dist < 0)
t[i][2] = t[i][2] - min_dist + 1.0;
}
// Compute projection matrices
P.resize(n_views);
for (size_t i = 0; i < n_views; ++i)
{
cv::Matx33d K3 = K, R3 = R[i];
cv::Vec3d t3 = t[i];
cv::sfm::projectionFromKRt(K3, R3, t3, P[i]);
}
// Compute homogeneous 3d points
cv::Mat_<double> points3d_homogeneous(4, n_points);
points3d.copyTo(points3d_homogeneous.rowRange(0, 3));
points3d_homogeneous.row(3).setTo(1);
// Project those points for every view
points2d.resize(n_views);
for (size_t i = 0; i < n_views; ++i)
{
cv::Mat_<double> points2d_tmp = cv::Mat(P[i]) * points3d_homogeneous;
points2d[i].create(2, n_points);
for (unsigned char j = 0; j < 2; ++j)
cv::Mat(points2d_tmp.row(j) / points2d_tmp.row(2)).copyTo(points2d[i].row(j));
}
// TODO: remove a certain number of points per view
// TODO: add a certain number of outliers per view
}