OpenCV_4.2.0/opencv_contrib-4.2.0/modules/rgbd/samples/odometry_evaluation.cpp

249 lines
7.8 KiB
C++
Raw Normal View History

2024-07-25 16:47:56 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
// This code is also subject to the license terms in the LICENSE_WillowGarage.md file found in this module's directory
#include <opencv2/rgbd.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/calib3d.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/core/utility.hpp>
#include <iostream>
#include <fstream>
using namespace std;
using namespace cv;
using namespace cv::rgbd;
#define BILATERAL_FILTER 0// if 1 then bilateral filter will be used for the depth
class MyTickMeter
{
public:
MyTickMeter() { reset(); }
void start() { startTime = getTickCount(); }
void stop()
{
int64 time = getTickCount();
if ( startTime == 0 )
return;
++counter;
sumTime += ( time - startTime );
startTime = 0;
}
int64 getTimeTicks() const { return sumTime; }
double getTimeSec() const { return (double)getTimeTicks()/getTickFrequency(); }
int64 getCounter() const { return counter; }
void reset() { startTime = sumTime = 0; counter = 0; }
private:
int64 counter;
int64 sumTime;
int64 startTime;
};
static
void writeResults( const string& filename, const vector<string>& timestamps, const vector<Mat>& Rt )
{
CV_Assert( timestamps.size() == Rt.size() );
ofstream file( filename.c_str() );
if( !file.is_open() )
return;
cout.precision(4);
for( size_t i = 0; i < Rt.size(); i++ )
{
const Mat& Rt_curr = Rt[i];
if( Rt_curr.empty() )
continue;
CV_Assert( Rt_curr.type() == CV_64FC1 );
Mat R = Rt_curr(Rect(0,0,3,3)), rvec;
Rodrigues(R, rvec);
double alpha = norm( rvec );
if(alpha > DBL_MIN)
rvec = rvec / alpha;
double cos_alpha2 = std::cos(0.5 * alpha);
double sin_alpha2 = std::sin(0.5 * alpha);
rvec *= sin_alpha2;
CV_Assert( rvec.type() == CV_64FC1 );
// timestamp tx ty tz qx qy qz qw
file << timestamps[i] << " " << fixed
<< Rt_curr.at<double>(0,3) << " " << Rt_curr.at<double>(1,3) << " " << Rt_curr.at<double>(2,3) << " "
<< rvec.at<double>(0) << " " << rvec.at<double>(1) << " " << rvec.at<double>(2) << " " << cos_alpha2 << endl;
}
file.close();
}
static
void setCameraMatrixFreiburg1(float& fx, float& fy, float& cx, float& cy)
{
fx = 517.3f; fy = 516.5f; cx = 318.6f; cy = 255.3f;
}
static
void setCameraMatrixFreiburg2(float& fx, float& fy, float& cx, float& cy)
{
fx = 520.9f; fy = 521.0f; cx = 325.1f; cy = 249.7f;
}
/*
* This sample helps to evaluate odometry on TUM datasets and benchmark http://vision.in.tum.de/data/datasets/rgbd-dataset.
* At this link you can find instructions for evaluation. The sample runs some opencv odometry and saves a camera trajectory
* to file of format that the benchmark requires. Saved file can be used for online evaluation.
*/
int main(int argc, char** argv)
{
if(argc != 4)
{
cout << "Format: file_with_rgb_depth_pairs trajectory_file odometry_name [Rgbd or ICP or RgbdICP or FastICP]" << endl;
return -1;
}
vector<string> timestamps;
vector<Mat> Rts;
const string filename = argv[1];
ifstream file( filename.c_str() );
if( !file.is_open() )
return -1;
char dlmrt = '/';
size_t pos = filename.rfind(dlmrt);
string dirname = pos == string::npos ? "" : filename.substr(0, pos) + dlmrt;
const int timestampLength = 17;
const int rgbPathLehgth = 17+8;
const int depthPathLehgth = 17+10;
float fx = 525.0f, // default
fy = 525.0f,
cx = 319.5f,
cy = 239.5f;
if(filename.find("freiburg1") != string::npos)
setCameraMatrixFreiburg1(fx, fy, cx, cy);
if(filename.find("freiburg2") != string::npos)
setCameraMatrixFreiburg2(fx, fy, cx, cy);
Mat cameraMatrix = Mat::eye(3,3,CV_32FC1);
{
cameraMatrix.at<float>(0,0) = fx;
cameraMatrix.at<float>(1,1) = fy;
cameraMatrix.at<float>(0,2) = cx;
cameraMatrix.at<float>(1,2) = cy;
}
Ptr<OdometryFrame> frame_prev = Ptr<OdometryFrame>(new OdometryFrame()),
frame_curr = Ptr<OdometryFrame>(new OdometryFrame());
Ptr<Odometry> odometry = Odometry::create(string(argv[3]) + "Odometry");
if(odometry.empty())
{
cout << "Can not create Odometry algorithm. Check the passed odometry name." << endl;
return -1;
}
odometry->setCameraMatrix(cameraMatrix);
MyTickMeter gtm;
int count = 0;
for(int i = 0; !file.eof(); i++)
{
string str;
std::getline(file, str);
if(str.empty()) break;
if(str.at(0) == '#') continue; /* comment */
Mat image, depth;
// Read one pair (rgb and depth)
// example: 1305031453.359684 rgb/1305031453.359684.png 1305031453.374112 depth/1305031453.374112.png
#if BILATERAL_FILTER
MyTickMeter tm_bilateral_filter;
#endif
{
string rgbFilename = str.substr(timestampLength + 1, rgbPathLehgth );
string timestap = str.substr(0, timestampLength);
string depthFilename = str.substr(2*timestampLength + rgbPathLehgth + 3, depthPathLehgth );
image = imread(dirname + rgbFilename);
depth = imread(dirname + depthFilename, -1);
CV_Assert(!image.empty());
CV_Assert(!depth.empty());
CV_Assert(depth.type() == CV_16UC1);
cout << i << " " << rgbFilename << " " << depthFilename << endl;
// scale depth
Mat depth_flt;
depth.convertTo(depth_flt, CV_32FC1, 1.f/5000.f);
#if !BILATERAL_FILTER
depth_flt.setTo(std::numeric_limits<float>::quiet_NaN(), depth == 0);
depth = depth_flt;
#else
tm_bilateral_filter.start();
depth = Mat(depth_flt.size(), CV_32FC1, Scalar(0));
const double depth_sigma = 0.03;
const double space_sigma = 4.5; // in pixels
Mat invalidDepthMask = depth_flt == 0.f;
depth_flt.setTo(-5*depth_sigma, invalidDepthMask);
bilateralFilter(depth_flt, depth, -1, depth_sigma, space_sigma);
depth.setTo(std::numeric_limits<float>::quiet_NaN(), invalidDepthMask);
tm_bilateral_filter.stop();
cout << "Time filter " << tm_bilateral_filter.getTimeSec() << endl;
#endif
timestamps.push_back( timestap );
}
{
Mat gray;
cvtColor(image, gray, COLOR_BGR2GRAY);
frame_curr->image = gray;
frame_curr->depth = depth;
Mat Rt;
if(!Rts.empty())
{
MyTickMeter tm;
tm.start();
gtm.start();
bool res = odometry->compute(frame_curr, frame_prev, Rt);
gtm.stop();
tm.stop();
count++;
cout << "Time " << tm.getTimeSec() << endl;
#if BILATERAL_FILTER
cout << "Time ratio " << tm_bilateral_filter.getTimeSec() / tm.getTimeSec() << endl;
#endif
if(!res)
Rt = Mat::eye(4,4,CV_64FC1);
}
if( Rts.empty() )
Rts.push_back(Mat::eye(4,4,CV_64FC1));
else
{
Mat& prevRt = *Rts.rbegin();
cout << "Rt " << Rt << endl;
Rts.push_back( prevRt * Rt );
}
if(!frame_prev.empty())
frame_prev->release();
std::swap(frame_prev, frame_curr);
}
}
std::cout << "Average time " << gtm.getTimeSec()/count << std::endl;
writeResults(argv[2], timestamps, Rts);
return 0;
}