131 lines
3.9 KiB
C++
131 lines
3.9 KiB
C++
|
// This file is part of OpenCV project.
|
||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||
|
// of this distribution and at http://opencv.org/license.html.
|
||
|
#ifndef OPENCV_TEST_PRECOMP_HPP
|
||
|
#define OPENCV_TEST_PRECOMP_HPP
|
||
|
|
||
|
#include <chrono>
|
||
|
#include <opencv2/core.hpp>
|
||
|
#include <opencv2/ts.hpp>
|
||
|
#include <opencv2/ts/ocl_test.hpp> // OCL_ON, OCL_OFF
|
||
|
#include <opencv2/imgcodecs.hpp>
|
||
|
#include <opencv2/quality.hpp>
|
||
|
#include <opencv2/quality/quality_utils.hpp>
|
||
|
|
||
|
namespace opencv_test
|
||
|
{
|
||
|
namespace quality_test
|
||
|
{
|
||
|
|
||
|
const cv::String
|
||
|
dataDir = "cv/optflow/"
|
||
|
, testfile1a = dataDir + "rock_1.bmp"
|
||
|
, testfile1b = dataDir + "rock_2.bmp"
|
||
|
, testfile2a = dataDir + "RubberWhale1.png"
|
||
|
, testfile2b = dataDir + "RubberWhale2.png"
|
||
|
;
|
||
|
|
||
|
const cv::Scalar
|
||
|
MSE_EXPECTED_1 = { 2136.0525 } // matlab: immse('rock_1.bmp', 'rock_2.bmp') == 2.136052552083333e+03
|
||
|
, MSE_EXPECTED_2 = { 92.8235, 109.4104, 121.4 } // matlab: immse('rubberwhale1.png', 'rubberwhale2.png') == {92.8235, 109.4104, 121.4}
|
||
|
;
|
||
|
|
||
|
inline cv::Mat get_testfile(const cv::String& path, int flags = IMREAD_UNCHANGED )
|
||
|
{
|
||
|
auto full_path = TS::ptr()->get_data_path() + path;
|
||
|
auto result = cv::imread( full_path, flags );
|
||
|
if (result.empty())
|
||
|
CV_Error(cv::Error::StsObjectNotFound, "Cannot find file: " + full_path );
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
inline cv::Mat get_testfile_1a() { return get_testfile(testfile1a, IMREAD_GRAYSCALE); }
|
||
|
inline cv::Mat get_testfile_1b() { return get_testfile(testfile1b, IMREAD_GRAYSCALE); }
|
||
|
inline cv::Mat get_testfile_2a() { return get_testfile(testfile2a); }
|
||
|
inline cv::Mat get_testfile_2b() { return get_testfile(testfile2b); }
|
||
|
|
||
|
const double QUALITY_ERR_TOLERANCE = .002 // allowed margin of error
|
||
|
;
|
||
|
|
||
|
inline void quality_expect_near( const cv::Scalar& a, const cv::Scalar& b, double err_tolerance = QUALITY_ERR_TOLERANCE)
|
||
|
{
|
||
|
for (int i = 0; i < a.rows; ++i)
|
||
|
{
|
||
|
if (std::isinf(a(i)))
|
||
|
EXPECT_EQ(a(i), b(i));
|
||
|
else
|
||
|
EXPECT_NEAR(a(i), b(i), err_tolerance);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename TMat>
|
||
|
inline void check_quality_map( const TMat& mat, const bool expect_empty = false )
|
||
|
{
|
||
|
EXPECT_EQ( mat.empty(), expect_empty );
|
||
|
if ( !expect_empty )
|
||
|
{
|
||
|
EXPECT_GT(mat.rows, 0);
|
||
|
EXPECT_GT(mat.cols, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// execute quality test for a pair of images
|
||
|
template <typename TMat>
|
||
|
inline void quality_test(cv::Ptr<quality::QualityBase> ptr, const TMat& cmp, const Scalar& expected, const bool quality_map_expected = true, const bool empty_expected = false )
|
||
|
{
|
||
|
cv::Mat qMat = {};
|
||
|
cv::UMat qUMat = {};
|
||
|
|
||
|
// quality map should return empty in initial state
|
||
|
ptr->getQualityMap(qMat);
|
||
|
EXPECT_TRUE( qMat.empty() );
|
||
|
|
||
|
// compute quality, check result
|
||
|
quality_expect_near( expected, ptr->compute(cmp));
|
||
|
|
||
|
if (empty_expected)
|
||
|
EXPECT_TRUE(ptr->empty());
|
||
|
else
|
||
|
EXPECT_FALSE(ptr->empty());
|
||
|
|
||
|
// getQualityMap to Mat, UMat
|
||
|
ptr->getQualityMap(qMat);
|
||
|
ptr->getQualityMap(qUMat);
|
||
|
|
||
|
// check them
|
||
|
check_quality_map(qMat, !quality_map_expected);
|
||
|
check_quality_map(qUMat, !quality_map_expected);
|
||
|
|
||
|
// reset algorithm, should now be empty
|
||
|
ptr->clear();
|
||
|
EXPECT_TRUE(ptr->empty());
|
||
|
}
|
||
|
|
||
|
/* A/B test benchmarking for development purposes */
|
||
|
/*
|
||
|
template <typename Fn>
|
||
|
inline void quality_performance_test( const char* name, Fn&& op )
|
||
|
{
|
||
|
const auto exec_test = [&]()
|
||
|
{
|
||
|
const int NRUNS = 100;
|
||
|
const auto start_t = std::chrono::high_resolution_clock::now();
|
||
|
for (int i = 0; i < NRUNS; ++i)
|
||
|
op();
|
||
|
|
||
|
const auto end_t = std::chrono::high_resolution_clock::now();
|
||
|
std::cout << name << " performance (OCL=" << cv::ocl::useOpenCL() << "): " << (double)(std::chrono::duration_cast<std::chrono::milliseconds>(end_t - start_t).count()) / (double)NRUNS << "ms\n";
|
||
|
};
|
||
|
|
||
|
// only run tests in NDEBUG mode
|
||
|
#ifdef NDEBUG
|
||
|
OCL_OFF(exec_test());
|
||
|
OCL_ON(exec_test());
|
||
|
#endif
|
||
|
}
|
||
|
*/
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif
|