OpenCV_4.2.0/opencv_contrib-4.2.0/modules/optflow/samples/pcaflow_demo.cpp

173 lines
5.0 KiB
C++
Raw Normal View History

2024-07-25 16:47:56 +08:00
#include "opencv2/core/ocl.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/optflow.hpp"
#include <fstream>
#include <iostream>
#include <stdio.h>
using namespace cv;
using optflow::OpticalFlowPCAFlow;
using optflow::PCAPrior;
const String keys = "{help h ? | | print this message}"
"{@image1 |<none>| image1}"
"{@image2 |<none>| image2}"
"{@groundtruth |<none>| path to the .flo file}"
"{@prior |<none>| path to a prior file for PCAFlow}"
"{@output |<none>| output image path}"
"{g gpu | | use OpenCL}";
static double normL2( const Point2f &v ) { return sqrt( v.x * v.x + v.y * v.y ); }
static bool fileProbe( const char *name ) { return std::ifstream( name ).good(); }
static Vec3d getFlowColor( const Point2f &f, const bool logScale = true, const double scaleDown = 5 )
{
if ( f.x == 0 && f.y == 0 )
return Vec3d( 0, 0, 1 );
double radius = normL2( f );
if ( logScale )
radius = log( radius + 1 );
radius /= scaleDown;
radius = std::min( 1.0, radius );
double angle = ( atan2( -f.y, -f.x ) + CV_PI ) * 180 / CV_PI;
return Vec3d( angle, radius, 1 );
}
static void displayFlow( InputArray _flow, OutputArray _img )
{
const Size sz = _flow.size();
Mat flow = _flow.getMat();
_img.create( sz, CV_32FC3 );
Mat img = _img.getMat();
for ( int i = 0; i < sz.height; ++i )
for ( int j = 0; j < sz.width; ++j )
img.at< Vec3f >( i, j ) = getFlowColor( flow.at< Point2f >( i, j ) );
cvtColor( img, img, COLOR_HSV2BGR );
}
static bool isFlowCorrect( const Point2f &u )
{
return !cvIsNaN( u.x ) && !cvIsNaN( u.y ) && ( fabs( u.x ) < 1e9 ) && ( fabs( u.y ) < 1e9 );
}
static double calcEPE( const Mat &f1, const Mat &f2 )
{
double sum = 0;
Size sz = f1.size();
size_t cnt = 0;
for ( int i = 0; i < sz.height; ++i )
for ( int j = 0; j < sz.width; ++j )
if ( isFlowCorrect( f1.at< Point2f >( i, j ) ) && isFlowCorrect( f2.at< Point2f >( i, j ) ) )
{
sum += normL2( f1.at< Point2f >( i, j ) - f2.at< Point2f >( i, j ) );
++cnt;
}
return sum / cnt;
}
static void displayResult( Mat &i1, Mat &i2, Mat &gt, Ptr< DenseOpticalFlow > &algo, OutputArray _img, const char *descr,
const bool useGpu = false )
{
Mat flow( i1.size[0], i1.size[1], CV_32FC2 );
TickMeter meter;
meter.start();
if ( useGpu )
algo->calc( i1, i2, flow.getUMat( ACCESS_RW ) );
else
algo->calc( i1, i2, flow );
meter.stop();
displayFlow( flow, _img );
Mat img = _img.getMat();
putText( img, descr, Point2i( 24, 40 ), FONT_HERSHEY_DUPLEX, 1, Vec3b( 1, 0, 0 ), 2, LINE_AA );
char buf[256];
sprintf( buf, "Average EPE: %.2f", calcEPE( flow, gt ) );
putText( img, buf, Point2i( 24, 80 ), FONT_HERSHEY_DUPLEX, 1, Vec3b( 1, 0, 0 ), 2, LINE_AA );
sprintf( buf, "Time: %.2fs", meter.getTimeSec() );
putText( img, buf, Point2i( 24, 120 ), FONT_HERSHEY_DUPLEX, 1, Vec3b( 1, 0, 0 ), 2, LINE_AA );
}
static void displayGT( InputArray _flow, OutputArray _img, const char *descr )
{
displayFlow( _flow, _img );
Mat img = _img.getMat();
putText( img, descr, Point2i( 24, 40 ), FONT_HERSHEY_DUPLEX, 1, Vec3b( 1, 0, 0 ), 2, LINE_AA );
}
int main( int argc, const char **argv )
{
CommandLineParser parser( argc, argv, keys );
parser.about( "PCAFlow demonstration" );
if ( parser.has( "help" ) )
{
parser.printMessage();
return 0;
}
String img1 = parser.get< String >( 0 );
String img2 = parser.get< String >( 1 );
String groundtruth = parser.get< String >( 2 );
String prior = parser.get< String >( 3 );
String outimg = parser.get< String >( 4 );
const bool useGpu = parser.has( "gpu" );
if ( !parser.check() )
{
parser.printErrors();
return 1;
}
if ( !fileProbe( prior.c_str() ) )
{
std::cerr << "Can't open the file with prior! Check the provided path: " << prior << std::endl;
return 1;
}
cv::ocl::setUseOpenCL( useGpu );
Mat i1 = imread( img1 );
Mat i2 = imread( img2 );
Mat gt = readOpticalFlow( groundtruth );
Mat i1g, i2g;
cvtColor( i1, i1g, COLOR_BGR2GRAY );
cvtColor( i2, i2g, COLOR_BGR2GRAY );
Mat pcaflowDisp, pcaflowpriDisp, farnebackDisp, gtDisp;
{
Ptr< DenseOpticalFlow > pcaflow = makePtr< OpticalFlowPCAFlow >( makePtr< PCAPrior >( prior.c_str() ) );
displayResult( i1, i2, gt, pcaflow, pcaflowpriDisp, "PCAFlow with prior", useGpu );
}
{
Ptr< DenseOpticalFlow > pcaflow = makePtr< OpticalFlowPCAFlow >();
displayResult( i1, i2, gt, pcaflow, pcaflowDisp, "PCAFlow without prior", useGpu );
}
{
Ptr< DenseOpticalFlow > farneback = optflow::createOptFlow_Farneback();
displayResult( i1g, i2g, gt, farneback, farnebackDisp, "Farneback", useGpu );
}
displayGT( gt, gtDisp, "Ground truth" );
Mat disp1, disp2;
vconcat( pcaflowpriDisp, farnebackDisp, disp1 );
vconcat( pcaflowDisp, gtDisp, disp2 );
hconcat( disp1, disp2, disp1 );
disp1 *= 255;
imwrite( outimg, disp1 );
return 0;
}