523 lines
18 KiB
C++
523 lines
18 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2014, Itseez Inc, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Itseez Inc or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include <iostream>
|
||
|
#include <opencv2/opencv_modules.hpp>
|
||
|
|
||
|
#ifdef HAVE_OPENCV_TEXT
|
||
|
|
||
|
#include "opencv2/datasets/tr_icdar.hpp"
|
||
|
#include <opencv2/core.hpp>
|
||
|
#include "opencv2/text.hpp"
|
||
|
#include "opencv2/imgproc.hpp"
|
||
|
#include "opencv2/imgcodecs.hpp"
|
||
|
|
||
|
#include <cstdio>
|
||
|
#include <cstdlib> // atoi
|
||
|
|
||
|
#include <string>
|
||
|
#include <vector>
|
||
|
|
||
|
using namespace std;
|
||
|
using namespace cv;
|
||
|
using namespace cv::datasets;
|
||
|
using namespace cv::text;
|
||
|
|
||
|
//Calculate edit distance between two words
|
||
|
size_t edit_distance(const string& A, const string& B);
|
||
|
size_t min(size_t x, size_t y, size_t z);
|
||
|
bool isRepetitive(const string& s);
|
||
|
bool sort_by_lenght(const string &a, const string &b);
|
||
|
//Draw ER's in an image via floodFill
|
||
|
void er_draw(vector<Mat> &channels, vector<vector<ERStat> > ®ions, vector<Vec2i> group, Mat& segmentation);
|
||
|
|
||
|
size_t min(size_t x, size_t y, size_t z)
|
||
|
{
|
||
|
return x < y ? min(x,z) : min(y,z);
|
||
|
}
|
||
|
|
||
|
size_t edit_distance(const string& A, const string& B)
|
||
|
{
|
||
|
size_t NA = A.size();
|
||
|
size_t NB = B.size();
|
||
|
|
||
|
vector< vector<size_t> > M(NA + 1, vector<size_t>(NB + 1));
|
||
|
|
||
|
for (size_t a = 0; a <= NA; ++a)
|
||
|
M[a][0] = a;
|
||
|
|
||
|
for (size_t b = 0; b <= NB; ++b)
|
||
|
M[0][b] = b;
|
||
|
|
||
|
for (size_t a = 1; a <= NA; ++a)
|
||
|
for (size_t b = 1; b <= NB; ++b)
|
||
|
{
|
||
|
size_t x = M[a-1][b] + 1;
|
||
|
size_t y = M[a][b-1] + 1;
|
||
|
size_t z = M[a-1][b-1] + (A[a-1] == B[b-1] ? 0 : 1);
|
||
|
M[a][b] = min(x,y,z);
|
||
|
}
|
||
|
|
||
|
return M[A.size()][B.size()];
|
||
|
}
|
||
|
|
||
|
bool sort_by_lenght(const string &a, const string &b){return (a.size()>b.size());}
|
||
|
|
||
|
bool isRepetitive(const string& s)
|
||
|
{
|
||
|
int count = 0;
|
||
|
for (int i=0; i<(int)s.size(); i++)
|
||
|
{
|
||
|
if ((s[i] == 'i') ||
|
||
|
(s[i] == 'l') ||
|
||
|
(s[i] == 'I'))
|
||
|
count++;
|
||
|
}
|
||
|
if (count > ((int)s.size()+1)/2)
|
||
|
{
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
void er_draw(vector<Mat> &channels, vector<vector<ERStat> > ®ions, vector<Vec2i> group, Mat& segmentation)
|
||
|
{
|
||
|
for (int r=0; r<(int)group.size(); r++)
|
||
|
{
|
||
|
ERStat er = regions[group[r][0]][group[r][1]];
|
||
|
if (er.parent != NULL) // deprecate the root region
|
||
|
{
|
||
|
int newMaskVal = 255;
|
||
|
int flags = 4 + (newMaskVal << 8) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY;
|
||
|
floodFill(channels[group[r][0]],segmentation,Point(er.pixel%channels[group[r][0]].cols,er.pixel/channels[group[r][0]].cols),
|
||
|
Scalar(255),0,Scalar(er.level),Scalar(0),flags);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// std::toupper is int->int
|
||
|
static char char_toupper(char ch)
|
||
|
{
|
||
|
return (char)std::toupper((int)ch);
|
||
|
}
|
||
|
|
||
|
int main(int argc, char *argv[])
|
||
|
{
|
||
|
const char *keys =
|
||
|
"{ help h usage ? | | show this message }"
|
||
|
"{ path p |true| path to dataset root folder }"
|
||
|
"{ ws wordspotting| | evaluate \"word spotting\" results }"
|
||
|
"{ lex lexicon |1 | 0:no-lexicon, 1:100-words, 2:full-lexicon }";
|
||
|
|
||
|
CommandLineParser parser(argc, argv, keys);
|
||
|
string path(parser.get<string>("path"));
|
||
|
if (parser.has("help") || path=="true")
|
||
|
{
|
||
|
parser.printMessage();
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
bool is_word_spotting = parser.has("ws");
|
||
|
int selected_lex = parser.get<int>("lex");
|
||
|
if ((selected_lex < 0) || (selected_lex > 2))
|
||
|
{
|
||
|
parser.printMessage();
|
||
|
printf("Unsupported lex value.\n");
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
// loading train & test images description
|
||
|
Ptr<TR_icdar> dataset = TR_icdar::create();
|
||
|
dataset->load(path);
|
||
|
|
||
|
|
||
|
vector<double> f1Each;
|
||
|
|
||
|
unsigned int correctNum = 0;
|
||
|
unsigned int returnedNum = 0;
|
||
|
unsigned int returnedCorrectNum = 0;
|
||
|
|
||
|
vector< Ptr<Object> >& test = dataset->getTest();
|
||
|
unsigned int num = 0;
|
||
|
for (vector< Ptr<Object> >::iterator itT=test.begin(); itT!=test.end(); ++itT)
|
||
|
{
|
||
|
TR_icdarObj *example = static_cast<TR_icdarObj *>((*itT).get());
|
||
|
|
||
|
num++;
|
||
|
printf("processed image: %u, name: %s\n", num, example->fileName.c_str());
|
||
|
|
||
|
vector<string> empty_lexicon;
|
||
|
vector<string> *lex;
|
||
|
switch (selected_lex)
|
||
|
{
|
||
|
case 0:
|
||
|
lex = &empty_lexicon;
|
||
|
break;
|
||
|
case 2:
|
||
|
lex = &example->lexFull;
|
||
|
break;
|
||
|
default:
|
||
|
lex = &example->lex100;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
correctNum += example->words.size();
|
||
|
unsigned int correctNumEach = example->words.size();
|
||
|
|
||
|
// Take care of dontcare regions t.value == "###"
|
||
|
for (size_t w=0; w<example->words.size(); w++)
|
||
|
{
|
||
|
string w_upper = example->words[w].value;
|
||
|
transform(w_upper.begin(), w_upper.end(), w_upper.begin(), char_toupper);
|
||
|
if ((find (lex->begin(), lex->end(), w_upper) == lex->end()) &&
|
||
|
(is_word_spotting) && (selected_lex != 0))
|
||
|
example->words[w].value = "###";
|
||
|
if ( (example->words[w].value == "###") || (example->words[w].value.size()<3) )
|
||
|
{
|
||
|
correctNum --;
|
||
|
correctNumEach --;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
unsigned int returnedNumEach = 0;
|
||
|
unsigned int returnedCorrectNumEach = 0;
|
||
|
|
||
|
Mat image = imread((path+"/test/"+example->fileName).c_str());
|
||
|
|
||
|
/*Text Detection*/
|
||
|
|
||
|
// Extract channels to be processed individually
|
||
|
vector<Mat> channels;
|
||
|
|
||
|
Mat grey;
|
||
|
cvtColor(image,grey,COLOR_RGB2GRAY);
|
||
|
|
||
|
// Notice here we are only using grey channel, see textdetection.cpp for example with more channels
|
||
|
channels.push_back(grey);
|
||
|
channels.push_back(255-grey);
|
||
|
|
||
|
|
||
|
// Create ERFilter objects with the 1st and 2nd sworde default classifiers
|
||
|
Ptr<ERFilter> er_filter1 = createERFilterNM1(loadClassifierNM1("trained_classifierNM1.xml"),8,0.00015f,0.13f,0.2f,true,0.1f);
|
||
|
Ptr<ERFilter> er_filter2 = createERFilterNM2(loadClassifierNM2("trained_classifierNM2.xml"),0.5);
|
||
|
|
||
|
vector<vector<ERStat> > regions(channels.size());
|
||
|
// Apply the default cascade classifier to each independent channel (could be done in parallel)
|
||
|
for (int c=0; c<(int)channels.size(); c++)
|
||
|
{
|
||
|
er_filter1->run(channels[c], regions[c]);
|
||
|
er_filter2->run(channels[c], regions[c]);
|
||
|
}
|
||
|
|
||
|
// Detect character groups
|
||
|
vector< vector<Vec2i> > nm_region_groups;
|
||
|
vector<Rect> nm_boxes;
|
||
|
erGrouping(image, channels, regions, nm_region_groups, nm_boxes, ERGROUPING_ORIENTATION_HORIZ);
|
||
|
|
||
|
/*Text Recognition (OCR)*/
|
||
|
|
||
|
Ptr<OCRTesseract> ocr = OCRTesseract::create();
|
||
|
bool ocr_is_tesseract = true;
|
||
|
|
||
|
vector<string> final_words;
|
||
|
vector<Rect> final_boxes;
|
||
|
vector<float> final_confs;
|
||
|
for (int i=0; i<(int)nm_boxes.size(); i++)
|
||
|
{
|
||
|
Mat group_img = Mat::zeros(image.rows+2, image.cols+2, CV_8UC1);
|
||
|
er_draw(channels, regions, nm_region_groups[i], group_img);
|
||
|
if (ocr_is_tesseract)
|
||
|
{
|
||
|
group_img(nm_boxes[i]).copyTo(group_img);
|
||
|
copyMakeBorder(group_img,group_img,15,15,15,15,BORDER_CONSTANT,Scalar(0));
|
||
|
} else {
|
||
|
group_img(Rect(1,1,image.cols,image.rows)).copyTo(group_img);
|
||
|
}
|
||
|
|
||
|
string output;
|
||
|
vector<Rect> boxes;
|
||
|
vector<string> words;
|
||
|
vector<float> confidences;
|
||
|
ocr->run(grey, group_img, output, &boxes, &words, &confidences, OCR_LEVEL_WORD);
|
||
|
|
||
|
output.erase(remove(output.begin(), output.end(), '\n'), output.end());
|
||
|
//cout << "OCR output = \"" << output << "\" length = " << output.size() << endl;
|
||
|
|
||
|
if (output.size() < 3)
|
||
|
continue;
|
||
|
|
||
|
for (int j=0; j<(int)boxes.size(); j++)
|
||
|
{
|
||
|
if (ocr_is_tesseract)
|
||
|
{
|
||
|
boxes[j].x += nm_boxes[i].x-15;
|
||
|
boxes[j].y += nm_boxes[i].y-15;
|
||
|
}
|
||
|
|
||
|
float min_confidence = (ocr_is_tesseract)? (float)51. : (float)0.;
|
||
|
float min_confidence4 = (ocr_is_tesseract)? (float)60. : (float)0.;
|
||
|
//cout << " word = " << words[j] << "\t confidence = " << confidences[j] << endl;
|
||
|
if ((words[j].size() < 2) || (confidences[j] < min_confidence) ||
|
||
|
((words[j].size()==2) && (words[j][0] == words[j][1])) ||
|
||
|
((words[j].size()< 4) && (confidences[j] < min_confidence4)) ||
|
||
|
isRepetitive(words[j]))
|
||
|
{
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
std::transform(words[j].begin(), words[j].end(), words[j].begin(), char_toupper);
|
||
|
|
||
|
/* Increase confidence of predicted words matching a word in the lexicon */
|
||
|
if (lex->size() > 0)
|
||
|
{
|
||
|
if (find(lex->begin(), lex->end(), words[j]) == lex->end())
|
||
|
confidences[j] = 200;
|
||
|
}
|
||
|
|
||
|
final_words.push_back(words[j]);
|
||
|
final_boxes.push_back(boxes[j]);
|
||
|
final_confs.push_back(confidences[j]);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
/* Non Maximal Suppression using OCR confidence */
|
||
|
float thr = 0.5;
|
||
|
|
||
|
for (size_t i=0; i<final_words.size(); )
|
||
|
{
|
||
|
int to_delete = -1;
|
||
|
for (size_t j=i+1; j<final_words.size(); )
|
||
|
{
|
||
|
to_delete = -1;
|
||
|
Rect intersection = final_boxes[i] & final_boxes[j];
|
||
|
float IoU = (float)intersection.area() / (final_boxes[i].area() + final_boxes[j].area() - intersection.area());
|
||
|
if ((IoU > thr) || (intersection.area() > 0.8*final_boxes[i].area()) || (intersection.area() > 0.8*final_boxes[j].area()))
|
||
|
{
|
||
|
// if regions overlap more than thr delete the one with lower confidence
|
||
|
to_delete = (final_confs[i] < final_confs[j]) ? i : j;
|
||
|
|
||
|
if (to_delete == (int)j )
|
||
|
{
|
||
|
final_words.erase(final_words.begin()+j);
|
||
|
final_boxes.erase(final_boxes.begin()+j);
|
||
|
final_confs.erase(final_confs.begin()+j);
|
||
|
continue;
|
||
|
} else {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
j++;
|
||
|
}
|
||
|
if (to_delete == (int)i )
|
||
|
{
|
||
|
final_words.erase(final_words.begin()+i);
|
||
|
final_boxes.erase(final_boxes.begin()+i);
|
||
|
final_confs.erase(final_confs.begin()+i);
|
||
|
continue;
|
||
|
}
|
||
|
i++;
|
||
|
}
|
||
|
|
||
|
/* Predicted words which are not in the lexicon are filtered
|
||
|
or changed to match one (when edit distance ratio < 0.34)*/
|
||
|
float max_edit_distance_ratio = (float)0.34;
|
||
|
for (size_t j=0; j<final_boxes.size(); j++)
|
||
|
{
|
||
|
|
||
|
if (lex->size() > 0)
|
||
|
{
|
||
|
if (find(lex->begin(), lex->end(), final_words[j]) == lex->end())
|
||
|
{
|
||
|
int best_match = -1;
|
||
|
int best_dist = final_words[j].size();
|
||
|
for (size_t l=0; l<lex->size(); l++)
|
||
|
{
|
||
|
int dist = edit_distance(lex->at(l),final_words[j]);
|
||
|
if (dist < best_dist)
|
||
|
{
|
||
|
best_match = l;
|
||
|
best_dist = dist;
|
||
|
}
|
||
|
}
|
||
|
if (best_dist/final_words[j].size() < max_edit_distance_ratio)
|
||
|
final_words[j] = lex->at(best_match);
|
||
|
else
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ((find (lex->begin(), lex->end(), final_words[j])
|
||
|
== lex->end()) && (is_word_spotting) && (selected_lex != 0))
|
||
|
continue;
|
||
|
|
||
|
// Output final recognition in csv format compatible with the ICDAR Competition
|
||
|
/*cout << final_boxes[j].tl().x << ","
|
||
|
<< final_boxes[j].tl().y << ","
|
||
|
<< min(final_boxes[j].br().x,image.cols-2)
|
||
|
<< "," << final_boxes[j].tl().y << ","
|
||
|
<< min(final_boxes[j].br().x,image.cols-2) << ","
|
||
|
<< min(final_boxes[j].br().y,image.rows-2) << ","
|
||
|
<< final_boxes[j].tl().x << ","
|
||
|
<< min(final_boxes[j].br().y,image.rows-2) << ","
|
||
|
<< final_words[j] << endl ;*/
|
||
|
|
||
|
returnedNum++;
|
||
|
returnedNumEach++;
|
||
|
|
||
|
bool matched = false;
|
||
|
for (vector<word>::iterator it=example->words.begin(); it!=example->words.end(); ++it)
|
||
|
{
|
||
|
word &t = (*it);
|
||
|
|
||
|
// ICDAR protocol accepts recognition up to the first non alphanumeric char
|
||
|
string alnum_value = t.value;
|
||
|
for (size_t c=0; c<alnum_value.size(); c++)
|
||
|
{
|
||
|
if (!isalnum(alnum_value[c]))
|
||
|
{
|
||
|
alnum_value = alnum_value.substr(0,c);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
std::transform(t.value.begin(), t.value.end(), t.value.begin(), char_toupper);
|
||
|
if (((t.value==final_words[j]) || (alnum_value==final_words[j])) &&
|
||
|
!(final_boxes[j].tl().x > t.x+t.width || final_boxes[j].br().x < t.x ||
|
||
|
final_boxes[j].tl().y > t.y+t.height || final_boxes[j].br().y < t.y))
|
||
|
{
|
||
|
matched = true;
|
||
|
returnedCorrectNum++;
|
||
|
returnedCorrectNumEach++;
|
||
|
//cout << "OK!" << endl;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!matched) // Take care of dontcare regions t.value == "###"
|
||
|
for (vector<word>::iterator it=example->words.begin(); it!=example->words.end(); ++it)
|
||
|
{
|
||
|
word &t = (*it);
|
||
|
std::transform(t.value.begin(), t.value.end(), t.value.begin(), char_toupper);
|
||
|
if ((t.value == "###") &&
|
||
|
!(final_boxes[j].tl().x > t.x+t.width || final_boxes[j].br().x < t.x ||
|
||
|
final_boxes[j].tl().y > t.y+t.height || final_boxes[j].br().y < t.y))
|
||
|
{
|
||
|
matched = true;
|
||
|
returnedNum--;
|
||
|
returnedNumEach--;
|
||
|
//cout << "DontCare!" << endl;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
//if (!matched) cout << "FAIL." << endl;
|
||
|
}
|
||
|
|
||
|
double p = 0.0;
|
||
|
if (0 != returnedNumEach)
|
||
|
{
|
||
|
p = 1.0*returnedCorrectNumEach/returnedNumEach;
|
||
|
}
|
||
|
double r = 0.0;
|
||
|
if (0 != correctNumEach)
|
||
|
{
|
||
|
r = 1.0*returnedCorrectNumEach/correctNumEach;
|
||
|
}
|
||
|
double f1 = 0.0;
|
||
|
if (0 != p+r)
|
||
|
{
|
||
|
f1 = 2*(p*r)/(p+r);
|
||
|
}
|
||
|
if ( (correctNumEach == 0) && (returnedNumEach == 0) )
|
||
|
{
|
||
|
p = 1.;
|
||
|
r = 1.;
|
||
|
f1 = 1.;
|
||
|
}
|
||
|
//printf("|%f|%f|%f|\n",r,p,f1);
|
||
|
f1Each.push_back(f1);
|
||
|
}
|
||
|
|
||
|
double p = 1.0*returnedCorrectNum/returnedNum;
|
||
|
double r = 1.0*returnedCorrectNum/correctNum;
|
||
|
double f1 = 2*(p*r)/(p+r);
|
||
|
|
||
|
printf("\n-------------------------------------------------------------------------\n");
|
||
|
printf("ICDAR2015 -- Challenge 2: \"Focused Scene Text\" -- Task 4 \"End-to-End\"\n");
|
||
|
if (is_word_spotting) printf(" Word spotting results -- ");
|
||
|
else printf(" End-to-End recognition results -- ");
|
||
|
switch (selected_lex)
|
||
|
{
|
||
|
case 0:
|
||
|
printf("generic recognition (no given lexicon)\n");
|
||
|
break;
|
||
|
case 2:
|
||
|
printf("weakly contextualized lexicon (624 words)\n");
|
||
|
break;
|
||
|
default:
|
||
|
printf("strongly contextualized lexicon (100 words)\n");
|
||
|
break;
|
||
|
}
|
||
|
printf(" Recall: %f | Precision: %f | F-score: %f\n", r, p, f1);
|
||
|
printf("-------------------------------------------------------------------------\n\n");
|
||
|
|
||
|
/*double mf1 = 0.0;
|
||
|
for (vector<double>::iterator it=f1Each.begin(); it!=f1Each.end(); ++it)
|
||
|
{
|
||
|
mf1 += *it;
|
||
|
}
|
||
|
mf1 /= f1Each.size();
|
||
|
printf("mean f1: %f\n", mf1);*/
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
int main()
|
||
|
{
|
||
|
std::cerr << "OpenCV was built without text module" << std::endl;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#endif // HAVE_OPENCV_TEXT
|