84 lines
2.4 KiB
C++
84 lines
2.4 KiB
C++
|
// This file is part of OpenCV project.
|
||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||
|
// of this distribution and at http://opencv.org/license.html.
|
||
|
#include "test_precomp.hpp"
|
||
|
|
||
|
namespace opencv_test { namespace {
|
||
|
|
||
|
CV_ENUM(SrcTypes, CV_8UC1, CV_8UC3, CV_16UC1, CV_16UC3);
|
||
|
typedef tuple<Size, SrcTypes> L0SmoothParams;
|
||
|
typedef TestWithParam<L0SmoothParams> L0SmoothTest;
|
||
|
|
||
|
TEST(L0SmoothTest, SplatSurfaceAccuracy)
|
||
|
{
|
||
|
RNG rnd(0);
|
||
|
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
Size sz(rnd.uniform(512, 1024), rnd.uniform(512, 1024));
|
||
|
|
||
|
Scalar surfaceValue;
|
||
|
int srcCn = 3;
|
||
|
rnd.fill(surfaceValue, RNG::UNIFORM, 0, 255);
|
||
|
Mat src(sz, CV_MAKE_TYPE(CV_8U, srcCn), surfaceValue);
|
||
|
|
||
|
double lambda = rnd.uniform(0.01, 0.05);
|
||
|
double kappa = rnd.uniform(1.5, 5.0);
|
||
|
|
||
|
Mat res;
|
||
|
l0Smooth(src, res, lambda, kappa);
|
||
|
|
||
|
// When filtering a constant image we should get the same image:
|
||
|
double normL1 = cvtest::norm(src, res, NORM_L1)/src.total()/src.channels();
|
||
|
EXPECT_LE(normL1, 1.0/64);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
TEST_P(L0SmoothTest, MultiThreadReproducibility)
|
||
|
{
|
||
|
if (cv::getNumberOfCPUs() == 1)
|
||
|
return;
|
||
|
|
||
|
double MAX_DIF = 10.0;
|
||
|
double MAX_MEAN_DIF = 1.0 / 8.0;
|
||
|
int loopsCount = 2;
|
||
|
RNG rng(0);
|
||
|
|
||
|
L0SmoothParams params = GetParam();
|
||
|
Size size = get<0>(params);
|
||
|
int srcType = get<1>(params);
|
||
|
|
||
|
Mat src(size,srcType);
|
||
|
if(src.depth()==CV_8U)
|
||
|
randu(src, 0, 255);
|
||
|
else if(src.depth()==CV_16U)
|
||
|
randu(src, 0, 65535);
|
||
|
else
|
||
|
randu(src, -100000.0f, 100000.0f);
|
||
|
|
||
|
|
||
|
int nThreads = cv::getNumThreads();
|
||
|
if (nThreads == 1)
|
||
|
throw SkipTestException("Single thread environment");
|
||
|
for (int iter = 0; iter <= loopsCount; iter++)
|
||
|
{
|
||
|
double lambda = rng.uniform(0.01, 0.05);
|
||
|
double kappa = rng.uniform(1.5, 5.0);
|
||
|
|
||
|
cv::setNumThreads(nThreads);
|
||
|
Mat resMultiThread;
|
||
|
l0Smooth(src, resMultiThread, lambda, kappa);
|
||
|
|
||
|
cv::setNumThreads(1);
|
||
|
Mat resSingleThread;
|
||
|
l0Smooth(src, resSingleThread, lambda, kappa);
|
||
|
|
||
|
EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_INF), MAX_DIF);
|
||
|
EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_L1), MAX_MEAN_DIF*src.total()*src.channels());
|
||
|
}
|
||
|
}
|
||
|
INSTANTIATE_TEST_CASE_P(FullSet, L0SmoothTest,Combine(Values(szODD, szQVGA), SrcTypes::all()));
|
||
|
|
||
|
|
||
|
}} // namespace
|