OpenCV_4.2.0/opencv_contrib-4.2.0/modules/face/samples/sampleDetectLandmarksvideo.cpp

110 lines
3.9 KiB
C++
Raw Permalink Normal View History

2024-07-25 16:47:56 +08:00
#include "opencv2/face.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/videoio.hpp"
#include "opencv2/objdetect.hpp"
#include <iostream>
#include <vector>
#include <string>
using namespace std;
using namespace cv;
using namespace cv::face;
static bool myDetector(InputArray image, OutputArray faces, CascadeClassifier *face_cascade)
{
Mat gray;
if (image.channels() > 1)
cvtColor(image, gray, COLOR_BGR2GRAY);
else
gray = image.getMat().clone();
equalizeHist(gray, gray);
std::vector<Rect> faces_;
face_cascade->detectMultiScale(gray, faces_, 1.4, 2, CASCADE_SCALE_IMAGE, Size(30, 30));
Mat(faces_).copyTo(faces);
return true;
}
int main(int argc,char** argv){
//Give the path to the directory containing all the files containing data
CommandLineParser parser(argc, argv,
"{ help h usage ? | | give the following arguments in following format }"
"{ model_filename f | | (required) path to binary file storing the trained model which is to be loaded [example - /data/file.dat]}"
"{ video v | | (required) path to video in which face landmarks have to be detected.[example - /data/video.avi] }"
"{ face_cascade c | | Path to the face cascade xml file which you want to use as a detector}"
);
// Read in the input arguments
if (parser.has("help")){
parser.printMessage();
cerr << "TIP: Use absolute paths to avoid any problems with the software!" << endl;
return 0;
}
string filename(parser.get<string>("model_filename"));
if (filename.empty()){
parser.printMessage();
cerr << "The name of the model file to be loaded for detecting landmarks is not found" << endl;
return -1;
}
string video(parser.get<string>("video"));
if (video.empty()){
parser.printMessage();
cerr << "The name of the video file in which landmarks have to be detected is not found" << endl;
return -1;
}
string cascade_name(parser.get<string>("face_cascade"));
if (cascade_name.empty()){
parser.printMessage();
cerr << "The name of the cascade classifier to be loaded to detect faces is not found" << endl;
return -1;
}
VideoCapture cap(video);
if(!cap.isOpened()){
cerr<<"Video cannot be loaded. Give correct path"<<endl;
return -1;
}
//pass the face cascade xml file which you want to pass as a detector
CascadeClassifier face_cascade;
face_cascade.load(cascade_name);
FacemarkKazemi::Params params;
Ptr<FacemarkKazemi> facemark = FacemarkKazemi::create(params);
facemark->setFaceDetector((FN_FaceDetector)myDetector, &face_cascade);
facemark->loadModel(filename);
cout<<"Loaded model"<<endl;
//vector to store the faces detected in the image
vector<Rect> faces;
vector< vector<Point2f> > shapes;
Mat img;
while(1){
faces.clear();
shapes.clear();
cap>>img;
//Detect faces in the current image
resize(img,img,Size(600,600), 0, 0, INTER_LINEAR_EXACT);
facemark->getFaces(img,faces);
if(faces.size()==0){
cout<<"No faces found in this frame"<<endl;
}
else{
for( size_t i = 0; i < faces.size(); i++ )
{
cv::rectangle(img,faces[i],Scalar( 255, 0, 0 ));
}
//vector to store the landmarks of all the faces in the image
if(facemark->fit(img,faces,shapes))
{
for(unsigned long i=0;i<faces.size();i++){
for(unsigned long k=0;k<shapes[i].size();k++)
cv::circle(img,shapes[i][k],3,cv::Scalar(0,0,255),FILLED);
}
}
}
namedWindow("Detected_shape");
imshow("Detected_shape",img);
if(waitKey(1) >= 0) break;
}
return 0;
}