154 lines
6.7 KiB
C++
154 lines
6.7 KiB
C++
|
/*
|
||
|
* Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>.
|
||
|
* Released to public domain under terms of the BSD Simplified license.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions are met:
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* * Neither the name of the organization nor the names of its contributors
|
||
|
* may be used to endorse or promote products derived from this software
|
||
|
* without specific prior written permission.
|
||
|
*
|
||
|
* See <http://www.opensource.org/licenses/bsd-license>
|
||
|
*/
|
||
|
|
||
|
#include "opencv2/core.hpp"
|
||
|
#include "opencv2/face.hpp"
|
||
|
#include "opencv2/highgui.hpp"
|
||
|
#include "opencv2/imgproc.hpp"
|
||
|
#include "opencv2/objdetect.hpp"
|
||
|
|
||
|
#include <iostream>
|
||
|
#include <fstream>
|
||
|
#include <sstream>
|
||
|
|
||
|
using namespace cv;
|
||
|
using namespace cv::face;
|
||
|
using namespace std;
|
||
|
|
||
|
static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';') {
|
||
|
std::ifstream file(filename.c_str(), ifstream::in);
|
||
|
if (!file) {
|
||
|
string error_message = "No valid input file was given, please check the given filename.";
|
||
|
CV_Error(Error::StsBadArg, error_message);
|
||
|
}
|
||
|
string line, path, classlabel;
|
||
|
while (getline(file, line)) {
|
||
|
stringstream liness(line);
|
||
|
getline(liness, path, separator);
|
||
|
getline(liness, classlabel);
|
||
|
if(!path.empty() && !classlabel.empty()) {
|
||
|
images.push_back(imread(path, 0));
|
||
|
labels.push_back(atoi(classlabel.c_str()));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int main(int argc, const char *argv[]) {
|
||
|
// Check for valid command line arguments, print usage
|
||
|
// if no arguments were given.
|
||
|
if (argc != 4) {
|
||
|
cout << "usage: " << argv[0] << " </path/to/haar_cascade> </path/to/csv.ext> </path/to/device id>" << endl;
|
||
|
cout << "\t </path/to/haar_cascade> -- Path to the Haar Cascade for face detection." << endl;
|
||
|
cout << "\t </path/to/csv.ext> -- Path to the CSV file with the face database." << endl;
|
||
|
cout << "\t <device id> -- The webcam device id to grab frames from." << endl;
|
||
|
exit(1);
|
||
|
}
|
||
|
// Get the path to your CSV:
|
||
|
string fn_haar = string(argv[1]);
|
||
|
string fn_csv = string(argv[2]);
|
||
|
int deviceId = atoi(argv[3]);
|
||
|
// These vectors hold the images and corresponding labels:
|
||
|
vector<Mat> images;
|
||
|
vector<int> labels;
|
||
|
// Read in the data (fails if no valid input filename is given, but you'll get an error message):
|
||
|
try {
|
||
|
read_csv(fn_csv, images, labels);
|
||
|
} catch (const cv::Exception& e) {
|
||
|
cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
|
||
|
// nothing more we can do
|
||
|
exit(1);
|
||
|
}
|
||
|
// Get the height from the first image. We'll need this
|
||
|
// later in code to reshape the images to their original
|
||
|
// size AND we need to reshape incoming faces to this size:
|
||
|
int im_width = images[0].cols;
|
||
|
int im_height = images[0].rows;
|
||
|
// Create a FaceRecognizer and train it on the given images:
|
||
|
Ptr<FisherFaceRecognizer> model = FisherFaceRecognizer::create();
|
||
|
model->train(images, labels);
|
||
|
// That's it for learning the Face Recognition model. You now
|
||
|
// need to create the classifier for the task of Face Detection.
|
||
|
// We are going to use the haar cascade you have specified in the
|
||
|
// command line arguments:
|
||
|
//
|
||
|
CascadeClassifier haar_cascade;
|
||
|
haar_cascade.load(fn_haar);
|
||
|
// Get a handle to the Video device:
|
||
|
VideoCapture cap(deviceId);
|
||
|
// Check if we can use this device at all:
|
||
|
if(!cap.isOpened()) {
|
||
|
cerr << "Capture Device ID " << deviceId << "cannot be opened." << endl;
|
||
|
return -1;
|
||
|
}
|
||
|
// Holds the current frame from the Video device:
|
||
|
Mat frame;
|
||
|
for(;;) {
|
||
|
cap >> frame;
|
||
|
// Clone the current frame:
|
||
|
Mat original = frame.clone();
|
||
|
// Convert the current frame to grayscale:
|
||
|
Mat gray;
|
||
|
cvtColor(original, gray, COLOR_BGR2GRAY);
|
||
|
// Find the faces in the frame:
|
||
|
vector< Rect_<int> > faces;
|
||
|
haar_cascade.detectMultiScale(gray, faces);
|
||
|
// At this point you have the position of the faces in
|
||
|
// faces. Now we'll get the faces, make a prediction and
|
||
|
// annotate it in the video. Cool or what?
|
||
|
for(size_t i = 0; i < faces.size(); i++) {
|
||
|
// Process face by face:
|
||
|
Rect face_i = faces[i];
|
||
|
// Crop the face from the image. So simple with OpenCV C++:
|
||
|
Mat face = gray(face_i);
|
||
|
// Resizing the face is necessary for Eigenfaces and Fisherfaces. You can easily
|
||
|
// verify this, by reading through the face recognition tutorial coming with OpenCV.
|
||
|
// Resizing IS NOT NEEDED for Local Binary Patterns Histograms, so preparing the
|
||
|
// input data really depends on the algorithm used.
|
||
|
//
|
||
|
// I strongly encourage you to play around with the algorithms. See which work best
|
||
|
// in your scenario, LBPH should always be a contender for robust face recognition.
|
||
|
//
|
||
|
// Since I am showing the Fisherfaces algorithm here, I also show how to resize the
|
||
|
// face you have just found:
|
||
|
Mat face_resized;
|
||
|
cv::resize(face, face_resized, Size(im_width, im_height), 1.0, 1.0, INTER_CUBIC);
|
||
|
// Now perform the prediction, see how easy that is:
|
||
|
int prediction = model->predict(face_resized);
|
||
|
// And finally write all we've found out to the original image!
|
||
|
// First of all draw a green rectangle around the detected face:
|
||
|
rectangle(original, face_i, Scalar(0, 255,0), 1);
|
||
|
// Create the text we will annotate the box with:
|
||
|
string box_text = format("Prediction = %d", prediction);
|
||
|
// Calculate the position for annotated text (make sure we don't
|
||
|
// put illegal values in there):
|
||
|
int pos_x = std::max(face_i.tl().x - 10, 0);
|
||
|
int pos_y = std::max(face_i.tl().y - 10, 0);
|
||
|
// And now put it into the image:
|
||
|
putText(original, box_text, Point(pos_x, pos_y), FONT_HERSHEY_PLAIN, 1.0, Scalar(0,255,0), 2);
|
||
|
}
|
||
|
// Show the result:
|
||
|
imshow("face_recognizer", original);
|
||
|
// And display it:
|
||
|
char key = (char) waitKey(20);
|
||
|
// Exit this loop on escape:
|
||
|
if(key == 27)
|
||
|
break;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|