from map import Map import numpy as np from reference_path import ReferencePath, Obstacle from spatial_bicycle_models import BicycleModel import matplotlib.pyplot as plt from MPC import MPC from scipy import sparse if __name__ == '__main__': # Select Simulation Mode | 'Race' or 'Q' sim_mode = 'Race' # Create Map if sim_mode == 'Race': map = Map(file_path='map_race.png', origin=[-1, -2], resolution=0.005) # Specify waypoints wp_x = [-0.75, -0.25, -0.25, 0.25, 0.25, 1.25, 1.25, 0.75, 0.75, 1.25, 1.25, -0.75, -0.75, -0.25] wp_y = [-1.5, -1.5, -0.5, -0.5, -1.5, -1.5, -1, -1, -0.5, -0.5, 0, 0, -1.5, -1.5] # Specify path resolution path_resolution = 0.05 # m / wp # Create smoothed reference path reference_path = ReferencePath(map, wp_x, wp_y, path_resolution, smoothing_distance=5, max_width=0.23, circular=True) elif sim_mode == 'Q': map = Map(file_path='map_floor2.png') wp_x = [-9.169, 11.9, 7.3, -6.95] wp_y = [-15.678, 10.9, 14.5, -3.31] # Specify path resolution path_resolution = 0.20 # m / wp # Create smoothed reference path reference_path = ReferencePath(map, wp_x, wp_y, path_resolution, smoothing_distance=5, max_width=1.50, circular=False) else: print('Invalid Simulation Mode!') map, wp_x, wp_y, path_resolution, reference_path \ = None, None, None, None, None exit(1) obs1 = Obstacle(cx=0.0, cy=0.0, radius=0.05) obs2 = Obstacle(cx=-0.8, cy=-0.5, radius=0.05) obs3 = Obstacle(cx=-0.7, cy=-1.5, radius=0.07) obs4 = Obstacle(cx=-0.3, cy=-1.0, radius=0.07) obs5 = Obstacle(cx=0.3, cy=-1.0, radius=0.05) obs6 = Obstacle(cx=0.75, cy=-1.5, radius=0.07) obs7 = Obstacle(cx=0.7, cy=-0.9, radius=0.08) obs8 = Obstacle(cx=1.2, cy=0.0, radius=0.08) obs9 = Obstacle(cx=0.7, cy=-0.1, radius=0.05) obs10 = Obstacle(cx=1.1, cy=-0.6, radius=0.07) reference_path.add_obstacles([obs1, obs2, obs3, obs4, obs5, obs6, obs7, obs8, obs9, obs10]) ################ # Motion Model # ################ # Initial state e_y_0 = 0.0 e_psi_0 = 0.0 t_0 = 0.0 V_MAX = 2.5 car = BicycleModel(length=0.12, width=0.06, reference_path=reference_path, e_y=e_y_0, e_psi=e_psi_0, t=t_0) ############## # Controller # ############## N = 30 Q = sparse.diags([1.0, 0.0, 0.0]) R = sparse.diags([1.0, 0.0]) QN = sparse.diags([0.0, 0.0, 0.0]) InputConstraints = {'umin': np.array([0.0, -np.tan(0.66)/car.l]), 'umax': np.array([V_MAX, np.tan(0.66)/car.l])} StateConstraints = {'xmin': np.array([-np.inf, -np.inf, -np.inf]), 'xmax': np.array([np.inf, np.inf, np.inf])} mpc = MPC(car, N, Q, R, QN, StateConstraints, InputConstraints) # Compute speed profile SpeedProfileConstraints = {'a_min': -2.0, 'a_max': 2.0, 'v_min': 0, 'v_max': V_MAX, 'ay_max': 5.0} car.reference_path.compute_speed_profile(SpeedProfileConstraints) ############## # Simulation # ############## # Sampling time Ts = 0.05 t = 0 car.set_sampling_time(Ts) # Logging containers x_log = [car.temporal_state.x] y_log = [car.temporal_state.y] v_log = [0.0] # Until arrival at end of path while car.s < reference_path.length: # get control signals u = mpc.get_control() # drive car car.drive(u) # log x_log.append(car.temporal_state.x) y_log.append(car.temporal_state.y) v_log.append(u[0]) ################### # Plot Simulation # ################### # Plot path and drivable area reference_path.show() plt.scatter(x_log, y_log, c=v_log, s=10) plt.colorbar() # Plot MPC prediction mpc.show_prediction() # Plot car car.show() # Increase simulation time t += Ts # Set figure title plt.title('MPC Simulation: v(t): {:.2f}, delta(t): {:.2f}, Duration: ' '{:.2f} s'.format(u[0], u[1], t)) plt.pause(0.0001) plt.show()