import numpy as np import osqp from scipy import sparse import matplotlib.pyplot as plt from time import time # Colors PREDICTION = '#BA4A00' ################## # MPC Controller # ################## class MPC: def __init__(self, model, N, Q, R, QN, StateConstraints, InputConstraints): """ Constructor for the Model Predictive Controller. :param model: bicycle model object to be controlled :param T: time horizon | int :param Q: state cost matrix :param R: input cost matrix :param QN: final state cost matrix :param StateConstraints: dictionary of state constraints :param InputConstraints: dictionary of input constraints """ # Parameters self.N = N # horizon self.Q = Q # weight matrix state vector self.R = R # weight matrix input vector self.QN = QN # weight matrix terminal # Model self.model = model # Dimensions self.nx = self.model.n_states self.nu = 2 # Constraints self.state_constraints = StateConstraints self.input_constraints = InputConstraints # Maximum lateral acceleration self.ay_max = 5.0 # Current control and prediction self.current_prediction = None # Counter for old control signals in case of infeasible problem self.infeasibility_counter = 0 # Current control signals self.current_control = np.ones((self.nu*self.N)) # Initialize Optimization Problem self.optimizer = osqp.OSQP() def _init_problem(self): """ Initialize optimization problem for current time step. """ # Constraints umin = self.input_constraints['umin'] umax = self.input_constraints['umax'] xmin = self.state_constraints['xmin'] xmax = self.state_constraints['xmax'] # LTV System Matrices A = np.zeros((self.nx * (self.N + 1), self.nx * (self.N + 1))) B = np.zeros((self.nx * (self.N + 1), self.nu * (self.N))) # Reference vector for state and input variables ur = np.zeros(self.nu*self.N) xr = np.array([0.0, 0.0, 0.0]) # Offset for equality constraint (due to B * (u - ur)) uq = np.zeros(self.N * self.nx) # Dynamic state constraints xmin_dyn = np.kron(np.ones(self.N + 1), xmin) xmax_dyn = np.kron(np.ones(self.N + 1), xmax) # Dynamic input constraints umax_dyn = np.kron(np.ones(self.N), umax) # Get curvature predictions from previous control signals kappa_pred = np.tan(np.array(self.current_control[3::] + self.current_control[-1:])) / self.model.l # Iterate over horizon for n in range(self.N): # Get information about current waypoint current_waypoint = self.model.reference_path.get_waypoint(self.model.wp_id + n) next_waypoint = self.model.reference_path.get_waypoint(self.model.wp_id + n + 1) delta_s = next_waypoint - current_waypoint kappa_ref = current_waypoint.kappa v_ref = current_waypoint.v_ref # Compute LTV matrices f, A_lin, B_lin = self.model.linearize(v_ref, kappa_ref, delta_s) A[(n+1) * self.nx: (n+2)*self.nx, n * self.nx:(n+1)*self.nx] = A_lin B[(n+1) * self.nx: (n+2)*self.nx, n * self.nu:(n+1)*self.nu] = B_lin # Set reference for input signal ur[n*self.nu:(n+1)*self.nu] = np.array([v_ref, kappa_ref]) # Compute equality constraint offset (B*ur) uq[n * self.nx:(n+1)*self.nx] = B_lin.dot(np.array ([v_ref, kappa_ref])) - f # Compute dynamic constraints on e_y lb, ub, cells = self.model.reference_path.update_bounds( self.model.wp_id + n, self.model.safety_margin[1]) xmin_dyn[self.nx * n] = lb xmax_dyn[self.nx * n] = ub # Constrain maximum speed based on predicted car curvature vmax_dyn = np.sqrt(self.ay_max / (np.abs(kappa_pred[n]) + 1e-12)) if vmax_dyn < umax_dyn[self.nu*n]: umax_dyn[self.nu*n] = vmax_dyn # Get equality matrix Ax = sparse.kron(sparse.eye(self.N + 1), -sparse.eye(self.nx)) + sparse.csc_matrix(A) Bu = sparse.csc_matrix(B) Aeq = sparse.hstack([Ax, Bu]) # Get inequality matrix Aineq = sparse.eye((self.N + 1) * self.nx + self.N * self.nu) # Combine constraint matrices A = sparse.vstack([Aeq, Aineq], format='csc') # Get upper and lower bound vectors for equality constraints lineq = np.hstack([xmin_dyn, np.kron(np.ones(self.N), umin)]) uineq = np.hstack([xmax_dyn, umax_dyn]) # Get upper and lower bound vectors for inequality constraints x0 = np.array(self.model.spatial_state[:]) leq = np.hstack([-x0, uq]) ueq = leq # Combine upper and lower bound vectors l = np.hstack([leq, lineq]) u = np.hstack([ueq, uineq]) # Set cost matrices P = sparse.block_diag([sparse.kron(sparse.eye(self.N), self.Q), self.QN, sparse.kron(sparse.eye(self.N), self.R)], format='csc') q = np.hstack( [np.kron(np.ones(self.N), -self.Q.dot(xr)), -self.QN.dot(xr), -np.tile(np.array([self.R.A[0, 0], self.R.A[1, 1]]), self.N) * ur]) # Initialize optimizer self.optimizer = osqp.OSQP() self.optimizer.setup(P=P, q=q, A=A, l=l, u=u, verbose=False) def get_control(self): """ Get control signal given the current position of the car. Solves a finite time optimization problem based on the linearized car model. """ # Number of state variables nx = self.model.n_states nu = 2 # Update current waypoint self.model.get_current_waypoint() # Update spatial state self.model.spatial_state = self.model.t2s() # Initialize optimization problem self._init_problem() # Solve optimization problem dec = self.optimizer.solve() try: # Get control signals control_signals = np.array(dec.x[-self.N*nu:]) control_signals[1::2] = np.arctan(control_signals[1::2] * self.model.l) v = control_signals[0] delta = control_signals[1] # Update control signals self.current_control = control_signals # Get predicted spatial states x = np.reshape(dec.x[:(self.N+1)*nx], (self.N+1, nx)) # Update predicted temporal states self.current_prediction = self.update_prediction(delta, x) # Get current control signal u = np.array([v, delta]) # if problem solved, reset infeasibility counter self.infeasibility_counter = 0 except: print('Infeasible problem. Previously predicted' ' control signal used!') id = nu * (self.infeasibility_counter + 1) u = np.array(self.current_control[id:id+2]) # increase infeasibility counter self.infeasibility_counter += 1 if self.infeasibility_counter == (self.N - 1): print('No control signal computed!') exit(1) return u def update_prediction(self, u, spatial_state_prediction): """ Transform the predicted states to predicted x and y coordinates. Mainly for visualization purposes. :param spatial_state_prediction: list of predicted state variables :return: lists of predicted x and y coordinates """ # containers for x and y coordinates of predicted states x_pred, y_pred = [], [] # get current waypoint ID #print('#########################') for n in range(2, self.N): associated_waypoint = self.model.reference_path.get_waypoint(self.model.wp_id+n) predicted_temporal_state = self.model.s2t(associated_waypoint, spatial_state_prediction[n, :]) #print(spatial_state_prediction[n, 2]) #print('delta: ', u) #print('e_y: ', spatial_state_prediction[n, 0]) #print('e_psi: ', spatial_state_prediction[n, 1]) #print('t: ', spatial_state_prediction[n, 2]) #print('+++++++++++++++++++++++') x_pred.append(predicted_temporal_state.x) y_pred.append(predicted_temporal_state.y) return x_pred, y_pred def show_prediction(self): """ Display predicted car trajectory in current axis. """ plt.scatter(self.current_prediction[0], self.current_prediction[1], c=PREDICTION, s=5)