import numpy as np import matplotlib.pyplot as plt from skimage.morphology import remove_small_holes from PIL import Image from skimage.draw import line_aa class Map: def __init__(self, file_path, threshold_occupied=100, origin=(-30.0, -24.0), resolution=0.06): """ Constructor for map object. Map contains occupancy grid map data of environment as well as meta information. :param file_path: path to image of map :param threshold_occupied: threshold value for binarization of map image :param origin: x and y coordinates of map origin in world coordinates [m] :param resolution: resolution in m/px """ # Set binarization threshold self.threshold_occupied = threshold_occupied # Numpy array containing map data self.data = np.array(Image.open(file_path))[:, :, 0] # Process raw map image self.process_map() # Store meta information self.height = self.data.shape[0] # height of the map in px self.width = self.data.shape[1] # width of the map in px self.resolution = resolution # resolution of the map in m/px self.origin = origin # x and y coordinates of map origin # (bottom-left corner) in m # Containers for user-specified additional obstacles and boundaries self.obstacles = list() self.boundaries = list() def w2m(self, x, y): """ World2Map. Transform coordinates from global coordinate system to map coordinates. :param x: x coordinate in global coordinate system :param y: y coordinate in global coordinate system :return: discrete x and y coordinates in px """ dx = int(np.floor((x - self.origin[0]) / self.resolution)) dy = int(np.floor((y - self.origin[1]) / self.resolution)) return dx, dy def m2w(self, dx, dy): """ Map2World. Transform coordinates from map coordinate system to global coordinates. :param dx: x coordinate in map coordinate system :param dy: y coordinate in map coordinate system :return: x and y coordinates of cell center in global coordinate system """ x = (dx + 0.5) * self.resolution + self.origin[0] y = (dy + 0.5) * self.resolution + self.origin[1] return x, y def add_obstacles(self, obstacles): """ Add obstacles to the map. :param obstacles: list of obstacle objects """ # Extend list of obstacles self.obstacles.extend(obstacles) # Iterate over list of new obstacles for obstacle in obstacles: # Compute radius of circular object in pixels radius_px = int(np.ceil(obstacle.radius / self.resolution)) # Get center coordinates of obstacle in map coordinates cx_px, cy_px = self.w2m(obstacle.cx, obstacle.cy) # Add circular object to map y, x = np.ogrid[-radius_px: radius_px, -radius_px: radius_px] index = x ** 2 + y ** 2 <= radius_px ** 2 self.data[cy_px-radius_px:cy_px+radius_px, cx_px-radius_px: cx_px+radius_px][index] = 0 def add_boundary(self, boundaries): """ Add boundaries to the map. :param boundaries: list of tuples containing coordinates of boundaries' start and end points """ # Extend list of boundaries self.boundaries.extend(boundaries) # Iterate over list of boundaries for boundary in boundaries: sx = self.w2m(boundary[0][0], boundary[0][1]) gx = self.w2m(boundary[1][0], boundary[1][1]) path_x, path_y, _ = line_aa(sx[0], sx[1], gx[0], gx[1]) for x, y in zip(path_x, path_y): self.data[y, x] = 0 def process_map(self): """ Process raw map image. Binarization and removal of small holes in map. """ # Binarization using specified threshold # 1 corresponds to free, 0 to occupied self.data = np.where(self.data >= self.threshold_occupied, 1, 0) # Remove small holes in map corresponding to spurious measurements self.data = remove_small_holes(self.data, area_threshold=5, connectivity=8).astype(np.int8) if __name__ == '__main__': map = Map('map_floor2.png') plt.imshow(map.data, cmap='gray') plt.show()