import numpy as np from abc import ABC, abstractmethod ######################### # Temporal State Vector # ######################### class TemporalState: def __init__(self, x, y, psi, v_x, v_y): """ Temporal State Vector containing car pose (x, y, psi) and velocity :param x: x position in global coordinate system | [m] :param y: y position in global coordinate system | [m] :param psi: yaw angle | [rad] :param v_x: velocity in x direction (car frame) | [m/s] :param v_y: velocity in y direction (car frame) | [m/s] """ self.x = x self.y = y self.psi = psi self.v_x = v_x self.v_y = v_y ######################## # Spatial State Vector # ######################## class SpatialState(ABC): """ Spatial State Vector - Abstract Base Class. """ @abstractmethod def __init__(self): pass def __getitem__(self, item): return list(vars(self).values())[item] def __len__(self): return len(vars(self)) def __iadd__(self, other): """ Overload Sum-Add operator. :param other: numpy array to be added to state vector """ for state_id, state in enumerate(vars(self).values()): vars(self)[list(vars(self).keys())[state_id]] += other[state_id] return self def list_states(self): """ Return list of names of all states. """ return list(vars(self).keys()) class SimpleSpatialState(SpatialState): def __init__(self, e_y, e_psi, v): """ Simplified Spatial State Vector containing orthogonal deviation from reference path (e_y), difference in orientation (e_psi) and velocity :param e_y: orthogonal deviation from center-line | [m] :param e_psi: yaw angle relative to path | [rad] :param v: absolute velocity | [m/s] """ super(SimpleSpatialState, self).__init__() self.e_y = e_y self.e_psi = e_psi self.v = v class ExtendedSpatialState(SpatialState): def __init__(self, e_y, e_psi, v_x, v_y, omega, t): """ Extended Spatial State Vector containing separate velocities in x and y direction, angular velocity and time :param e_y: orthogonal deviation from center-line | [m] :param e_psi: yaw angle relative to path | [rad] :param v_x: velocity in x direction (car frame) | [m/s] :param v_y: velocity in y direction (car frame) | [m/s] :param omega: anglular velocity of the car | [rad/s] :param t: simulation time| [s] """ super(ExtendedSpatialState, self).__init__() self.e_y = e_y self.e_psi = e_psi self.v_x = v_x self.v_y = v_y self.omega = omega self.t = t #################################### # Spatial Bicycle Model Base Class # #################################### class SpatialBicycleModel(ABC): def __init__(self, reference_path): """ Abstract Base Class for Spatial Reformulation of Bicycle Model. :param reference_path: reference path object to follow """ # Precision self.eps = 1e-12 # Reference Path self.reference_path = reference_path # Set initial distance traveled self.s = 0.0 # Set initial waypoint ID self.wp_id = 0 # Set initial waypoint self.current_waypoint = self.reference_path.waypoints[self.wp_id] # Declare spatial state variable | Initialization in sub-class self.spatial_state = None # Declare temporal state variable | Initialization in sub-class self.temporal_state = None # Declare system matrices of linearized model | Used for MPC self.A, self.B = None, None def s2t(self, reference_waypoint=None, reference_state=None): """ Convert spatial state to temporal state. Either convert self.spatial_ state with current waypoint as reference or provide reference waypoint and reference_state. :return x, y, psi """ # Compute spatial state for current waypoint if no waypoint given if reference_waypoint is None and reference_state is None: # compute temporal state variables x = self.current_waypoint.x - self.spatial_state.e_y * np.sin( self.current_waypoint.psi) y = self.current_waypoint.y + self.spatial_state.e_y * np.cos( self.current_waypoint.psi) psi = self.current_waypoint.psi + self.spatial_state.e_psi else: # compute temporal state variables x = reference_waypoint.x - reference_state[0] * np.sin( reference_waypoint.psi) y = reference_waypoint.y + reference_state[0] * np.cos( reference_waypoint.psi) psi = reference_waypoint.psi + reference_state[1] return x, y, psi def drive(self, D, delta): """ Update states of spatial bicycle model. Model drive to the next waypoint on the reference path. :param D: acceleration command | [-1, 1] :param delta: angular velocity | [rad] """ # Get spatial derivatives spatial_derivatives = self.get_spatial_derivatives(D, delta) # Get delta_s | distance to next waypoint next_waypoint = self.reference_path.waypoints[self.wp_id+1] delta_s = next_waypoint - self.current_waypoint # Update spatial state (Forward Euler Approximation) self.spatial_state += spatial_derivatives * delta_s # Assert that unique projections of car pose onto path exists assert self.spatial_state.e_y < (1 / (self.current_waypoint.kappa + self.eps)) # Increase waypoint ID self.wp_id += 1 # Update current waypoint self.current_waypoint = self.reference_path.waypoints[self.wp_id] # Update temporal_state to match spatial state self.temporal_state = self.s2t() # Update s | total driven distance along path self.s += delta_s # Linearize model around new operating point self.A, self.B = self.linearize() @abstractmethod def get_spatial_derivatives(self, D, delta): pass @abstractmethod def linearize(self): pass ######################## # Simple Bicycle Model # ######################## class SimpleBicycleModel(SpatialBicycleModel): def __init__(self, reference_path, e_y, e_psi, v): """ Simplified Spatial Bicycle Model. Spatial Reformulation of Kinematic Bicycle Model. Uses Simplified Spatial State. :param reference_path: reference path model is supposed to follow :param e_y: deviation from reference path | [m] :param e_psi: heading offset from reference path | [rad] :param v: initial velocity | [m/s] """ # Initialize base class super(SimpleBicycleModel, self).__init__(reference_path) # Constants self.C1 = 0.5 self.C2 = 17.06 self.Cm1 = 12.0 self.Cm2 = 2.17 self.Cr2 = 0.1 self.Cr0 = 0.6 # Initialize spatial state self.spatial_state = SimpleSpatialState(e_y, e_psi, v) # Initialize temporal state self.temporal_state = self.s2t() # Compute linear system matrices | Used for MPC self.A, self.B = self.linearize() def s2t(self, reference_waypoint=None, reference_state=None): """ Convert spatial state to temporal state. Either convert self.spatial_ state with current waypoint as reference or provide reference waypoint and reference_state. :return temporal state equivalent to self.spatial_state or provided reference state """ if reference_state is None and reference_waypoint is None: # Get pose information from base class implementation x, y, psi = super(SimpleBicycleModel, self).s2t() # Compute simplified velocities v_x = self.spatial_state.v v_y = 0 else: # Get pose information from base class implementation x, y, psi = super(SimpleBicycleModel, self).s2t(reference_waypoint, reference_state) v_x = reference_state[2] v_y = 0 return TemporalState(x, y, psi, v_x, v_y) def get_temporal_derivatives(self, D, delta): """ Compute relevant temporal derivatives needed for state update. :param D: duty-cycle of DC motor | [-1, 1] :param delta: steering command | [rad] :return: temporal derivatives of distance, angle and velocity """ # Compute velocity components | Approximation for small delta v_x = self.spatial_state.v v_y = self.spatial_state.v * delta * self.C1 # Compute velocity along waypoint direction v_sigma = v_x * np.cos(self.spatial_state.e_psi) - v_y * np.sin( self.spatial_state.e_psi) # Compute velocity along path s_dot = 1 / (1 - (self.spatial_state.e_y * self.current_waypoint.kappa)) * v_sigma # Compute yaw angle rate of change psi_dot = self.spatial_state.v * delta * self.C2 # Compute acceleration v_dot = (self.Cm1 - self.Cm2 * self.spatial_state.v) * D - self.Cr2 * ( self.spatial_state.v ** 2) - self.Cr0 - ( self.spatial_state.v * delta) ** 2 * self.C2 * self.C1 ** 2 return s_dot, psi_dot, v_dot def get_spatial_derivatives(self, delta, D): """ Compute spatial derivatives of all state variables for update. :param delta: steering angle | [rad] :param D: duty-cycle of DC motor | [-1, 1] :return: numpy array with spatial derivatives for all state variables """ # Compute temporal derivatives s_dot, psi_dot, v_dot = self.get_temporal_derivatives(D, delta) # Compute spatial derivatives d_e_y_d_s = (self.spatial_state.v * np.sin(self.spatial_state.e_psi) + self.spatial_state.v * delta * self.C1 * np.cos( self.spatial_state.e_psi)) / s_dot d_e_psi_d_s = psi_dot / s_dot - self.current_waypoint.kappa d_v_d_s = v_dot / s_dot return np.array([d_e_y_d_s, d_e_psi_d_s, d_v_d_s]) def linearize(self, D=0, delta=0): """ Linearize the system equations around the current state and waypoint. :param delta: reference steering angle | [rad] :param D: reference duty-cycle of DC-motor | [-1, 1] """ # Get current state | operating point to linearize around e_y = self.spatial_state.e_y e_psi = self.spatial_state.e_psi v = self.spatial_state.v # Get curvature of current waypoint kappa = self.reference_path.waypoints[self.wp_id].kappa # Get delta_s next_waypoint = self.reference_path.waypoints[self.wp_id+1] delta_s = next_waypoint - self.current_waypoint ############################## # Helper Partial Derivatives # ############################## # Compute velocity components v_x = v v_y = v * delta * self.C1 # Compute partial derivatives of s_dot w.r.t. each state variable, # input variable and kappa s_dot = 1 / (1 - e_y*kappa) * (v_x * np.cos(e_psi) - v_y * np.sin(e_psi)) d_s_dot_d_e_y = kappa / (1-e_y*kappa)**2 * (v_x * np.cos(e_psi) - v_y * np.sin(e_psi)) d_s_dot_d_e_psi = 1 / (1 - e_y*kappa) * (-v_x * np.sin(e_psi) - v_y * np.cos(e_psi)) d_s_dot_d_v = 1 / (1 - e_y*kappa) * (np.cos(e_psi) - delta * self.C1 * np.sin(e_psi)) # d_s_dot_d_D = 0 d_s_dot_d_delta = 1 / (1 - e_y*kappa) * (- v * self.C1 * np.sin(e_psi)) d_s_dot_d_kappa = e_y / (1-e_y*kappa)**2 * (v_x * np.cos(e_psi) - v_y * np.sin(e_psi)) # Compute partial derivatives of v_psi w.r.t. each state variable, # input variable and kappa v_psi = (v_x * np.sin(e_psi) + v_y * np.cos(e_psi)) # d_v_psi_d_e_y = 0 d_v_psi_d_e_psi = v_x * np.cos(e_psi) - v_y * np.sin(e_psi) d_v_psi_d_v = np.sin(e_psi) + self.C1 * delta * np.cos(e_psi) # d_v_psi_d_D = 0 d_v_psi_d_delta = self.C1 * v * np.cos(e_psi) # d_v_psi_d_kappa = 0 # Compute partial derivatives of psi_dot w.r.t. each state variable, # input variable and kappa psi_dot = v * delta * self.C2 # d_psi_dot_d_e_y = 0 # d_psi_dot_d_e_psi = 0 d_psi_dot_d_v = delta * self.C2 # d_psi_dot_d_D = 0 d_psi_dot_d_delta = v * self.C2 # d_psi_dot_d_kappa = 0 # Compute partial derivatives of v_dot w.r.t. each state variable, # input variable and kappa v_dot = (self.Cm1 - self.Cm2 * v) * D - self.Cr2 * (v ** 2) - self.Cr0 \ - (v * delta) ** 2 * self.C2 * (self.C1 ** 2) # d_v_dot_d_e_y = 0 # d_v_dot_d_e_psi = 0 d_v_dot_d_v = -self.Cm2 * D - 2 * self.Cr2 * v - 2 * v * (delta ** 2) \ * self.C2 * (self.C1 ** 2) d_v_dot_d_D = self.Cm1 - self.Cm2 * v d_v_dot_d_delta = -2 * (v ** 2) * delta * self.C2 * self.C1 ** 2 # d_v_dot_d_kappa = 0 ############################# # State Partial Derivatives # ############################# # Use pre-computed helper derivatives to compute spatial derivatives of # all state variables using Quotient Rule # Compute partial derivatives of e_y w.r.t. each state variable, # input variable and kappa # e_y = v_psi / s_dot d_e_y_d_e_y = - d_s_dot_d_e_y * v_psi / (s_dot**2) d_e_y_d_e_psi = (d_v_psi_d_e_psi * s_dot - d_s_dot_d_e_psi * v_psi) / (s_dot**2) d_e_y_d_v = (d_v_psi_d_v * s_dot - d_s_dot_d_v * v_psi) / (s_dot**2) d_e_y_d_D = 0 d_e_y_d_delta = (d_v_psi_d_delta * s_dot - d_s_dot_d_delta * v_psi) / (s_dot**2) d_e_y_d_kappa = - d_s_dot_d_kappa * v_psi / (s_dot**2) # Compute partial derivatives of e_psi w.r.t. each state variable, # input variable and kappa # e_psi = psi_dot / s_dot - kappa d_e_psi_d_e_y = - d_s_dot_d_e_y * psi_dot / (s_dot**2) d_e_psi_d_e_psi = - d_s_dot_d_e_psi * psi_dot / (s_dot**2) d_e_psi_d_v = (d_psi_dot_d_v * s_dot - d_s_dot_d_v * psi_dot) / (s_dot**2) d_e_psi_d_D = 0 d_e_psi_d_delta = (d_psi_dot_d_delta * s_dot - d_s_dot_d_delta * psi_dot) / (s_dot**2) d_e_psi_d_kappa = - d_s_dot_d_kappa * psi_dot / (s_dot**2) - 1 # Compute partial derivatives of v w.r.t. each state variable, # input variable and kappa # v = v_dot / s_dot d_v_d_e_y = - d_s_dot_d_e_y * v_dot / (s_dot**2) d_v_d_e_psi = - d_s_dot_d_e_psi * v_dot / (s_dot**2) d_v_d_v = (d_v_dot_d_v * s_dot - d_s_dot_d_v * v_dot) / (s_dot**2) d_v_d_D = d_v_dot_d_D * s_dot / (s_dot**2) d_v_d_delta = (d_v_dot_d_delta * s_dot - d_s_dot_d_delta * v_dot) / (s_dot**2) d_v_d_kappa = - d_s_dot_d_kappa * v_dot / (s_dot**2) ############# # Jacobians # ############# # Construct Jacobian Matrix a_1 = np.array([d_e_y_d_e_y, d_e_y_d_e_psi, d_e_y_d_v, d_e_y_d_kappa]) a_2 = np.array([d_e_psi_d_e_y, d_e_psi_d_e_psi, d_e_psi_d_v, d_e_psi_d_kappa]) a_3 = np.array([d_v_d_e_y, d_v_d_e_psi, d_v_d_v, d_v_d_kappa]) b_1 = np.array([d_e_y_d_D, d_e_y_d_delta]) b_2 = np.array([d_e_psi_d_D, d_e_psi_d_delta]) b_3 = np.array([d_v_d_D, d_v_d_delta]) # Add extra row for kappa | Allows for updating kappa during MPC # optimization a_4 = np.array([0, 0, 0, 0]) b_4 = np.array([0, 0]) Ja = np.stack((a_1, a_2, a_3, a_4), axis=0) Jb = np.stack((b_1, b_2, b_3, b_4), axis=0) ################### # System Matrices # ################### # Construct system matrices from Jacobians. Multiply by sampling # distance delta_s + add identity matrix (Forward Euler Approximation) A = Ja * delta_s + np.identity(Ja.shape[1]) B = Jb * delta_s return A, B ########################## # Extended Bicycle Model # ########################## class ExtendedBicycleModel(SpatialBicycleModel): def __init__(self, reference_path, e_y, e_psi, v_x, v_y, omega, t): """ Construct spatial bicycle model. :param e_y: initial deviation from reference path | [m] :param e_psi: initial heading offset from reference path | [rad] :param v: initial velocity | [m/s] :param reference_path: reference path model is supposed to follow """ super(ExtendedBicycleModel, self).__init__(reference_path) # Constants self.m = 0.041 self.Iz = 27.8e-6 self.lf = 0.029 self.lr = 0.033 self.Cm1 = 0.287 self.Cm2 = 0.0545 self.Cr2 = 0.0518 self.Cr0 = 0.00035 self.Br = 3.3852 self.Cr = 1.2691 self.Dr = 0.1737 self.Bf = 2.579 self.Cf = 1.2 self.Df = 0.192 # Spatial state self.spatial_state = ExtendedSpatialState(e_y, e_psi, v_x, v_y, omega, t) # Temporal state self.temporal_state = self.s2t() # Linear System Matrices self.A, self.B = self.linearize() def s2t(self, reference_waypoint=None, predicted_state=None): """ Convert spatial state to temporal state :return temporal state equivalent to self.spatial_state """ # compute velocity information if predicted_state is None and reference_waypoint is None: # get information from base class x, y, psi = super(ExtendedBicycleModel, self).s2t() v_x = self.spatial_state.v_x v_y = self.spatial_state.v_y else: # get information from base class x, y, psi = super(ExtendedBicycleModel, self).s2t(reference_waypoint, predicted_state) v_x = predicted_state[2] v_y = predicted_state[3] return TemporalState(x, y, psi, v_x, v_y) def get_forces(self, delta, D): """ Compute forces required for temporal derivatives of v_x and v_y :param delta: :param D: :return: """ F_rx = (self.Cm1 - self.Cm2 * self.spatial_state.v_x) * D - self.Cr0 - self.Cr2 * self.spatial_state.v_x ** 2 alpha_f = - np.arctan2(self.spatial_state.omega*self.lf + self.spatial_state.v_y, self.spatial_state.v_x) + delta F_fy = self.Df * np.sin(self.Cf*np.arctan(self.Bf*alpha_f)) alpha_r = np.arctan2(self.spatial_state.omega*self.lr - self.spatial_state.v_y, self.spatial_state.v_x) F_ry = self.Dr * np.sin(self.Cr * np.arctan(self.Br*alpha_r)) return F_rx, F_fy, F_ry, alpha_f, alpha_r def get_temporal_derivatives(self, delta, F_rx, F_fy, F_ry): """ Compute temporal derivatives needed for state update. :param delta: steering command :param D: duty-cycle of DC motor :return: temporal derivatives of distance, angle and velocity """ # velocity along path s_dot = 1 / (1 - (self.spatial_state.e_y * self.current_waypoint.kappa)) \ * (self.spatial_state.v_x * np.cos(self.spatial_state.e_psi) + self.spatial_state.v_y * np.sin(self.spatial_state.e_psi)) # velocity in x and y direction v_x_dot = (F_rx - F_fy * np.sin(delta) + self.m * self.spatial_state. v_y * self.spatial_state.omega) / self.m v_y_dot = (F_ry + F_fy * np.cos(delta) - self.m * self.spatial_state. v_x * self.spatial_state.omega) / self.m # omega dot omega_dot = (F_fy * self.lf * np.cos(delta) - F_ry * self.lr) / self.Iz return s_dot, v_x_dot, v_y_dot, omega_dot def get_spatial_derivatives(self, delta, D): """ Compute spatial derivatives of all state variables for update. :param delta: steering angle :param psi_dot: heading rate of change :param s_dot: velocity along path :param v_dot: acceleration :return: spatial derivatives for all state variables """ # get required forces F_rx, F_fy, F_ry, _, _ = self.get_forces(delta, D) # Compute state derivatives s_dot, v_x_dot, v_y_dot, omega_dot = \ self.get_temporal_derivatives(delta, F_rx, F_fy, F_ry) d_e_y = (self.spatial_state.v_x * np.sin(self.spatial_state.e_psi) + self.spatial_state.v_y * np.cos(self.spatial_state.e_psi)) \ / (s_dot + self.eps) d_e_psi = (self.spatial_state.omega / (s_dot + self.eps) - self.current_waypoint.kappa) d_v_x = v_x_dot / (s_dot + self.eps) d_v_y = v_y_dot / (s_dot + self.eps) d_omega = omega_dot / (s_dot + self.eps) d_t = 1 / (s_dot + self.eps) return np.array([d_e_y, d_e_psi, d_v_x, d_v_y, d_omega, d_t]) def linearize(self, delta=0, D=0): """ Linearize the system equations around the current state and waypoint. :param delta: reference steering angle :param D: reference dutycycle """ # get current state e_y = self.spatial_state.e_y e_psi = self.spatial_state.e_psi v_x = self.spatial_state.v_x v_y = self.spatial_state.v_y omega = self.spatial_state.omega t = self.spatial_state.t # get information about current waypoint kappa = self.reference_path.waypoints[self.wp_id].kappa # get delta_s next_waypoint = self.reference_path.waypoints[self.wp_id + 1] delta_s = next_waypoint - self.current_waypoint # get temporal derivatives F_rx, F_fy, F_ry, alpha_f, alpha_r = self.get_forces(delta, D) s_dot, v_x_dot, v_y_dot, omega_dot = self.\ get_temporal_derivatives(delta, F_rx, F_fy, F_ry) ############################## # Forces Partial Derivatives # ############################## d_alpha_f_d_v_x = 1 / (1 + ((omega * self.lf + v_y) / v_x)**2) * (omega * self.lf + v_y) / (v_x**2) d_alpha_f_d_v_y = - 1 / (1 + ((omega * self.lf + v_y) / v_x)**2) / v_x d_alpha_f_d_omega = - 1 / (1 + ((omega * self.lf + v_y) / v_x)**2) * (self.lf / v_x) d_alpha_f_d_delta = 1 d_alpha_r_d_v_x = - 1 / (1 + ((omega * self.lr - v_y) / v_x)**2) * (omega * self.lr - v_y) / (v_x**2) d_alpha_r_d_v_y = - 1 / (1 + ((omega * self.lr - v_y) / v_x)**2) / v_x d_alpha_r_d_omega = 1 / (1 + ((omega * self.lr - v_y) / v_x)**2) * (self.lr * v_x) d_F_fy_d_v_x = self.Df * np.cos(self.Cf * np.arctan(self.Bf * alpha_f)) * self.Cf / (1 + (self.Bf * alpha_f)**2) * self.Bf * d_alpha_f_d_v_x d_F_fy_d_v_y = self.Df * np.cos(self.Cf * np.arctan(self.Bf * alpha_f)) * self.Cf / (1 + (self.Bf * alpha_f)**2) * self.Bf * d_alpha_f_d_v_y d_F_fy_d_omega = self.Df * np.cos(self.Cf * np.arctan(self.Bf * alpha_f)) * self.Cf / (1 + (self.Bf * alpha_f)**2) * self.Bf * d_alpha_f_d_omega d_F_fy_d_delta = self.Df * np.cos(self.Cf * np.arctan(self.Bf * alpha_f)) * self.Cf / (1 + (self.Bf * alpha_f)**2) * self.Bf * d_alpha_f_d_delta d_F_ry_d_v_x = self.Dr * np.cos(self.Cr * np.arctan(self.Br * alpha_r)) * self.Cr / (1 + (self.Br * alpha_r)**2) * self.Br * d_alpha_r_d_v_x d_F_ry_d_v_y = self.Dr * np.cos(self.Cr * np.arctan(self.Br * alpha_r)) * self.Cr / (1 + (self.Br * alpha_r)**2) * self.Br * d_alpha_r_d_v_y d_F_ry_d_omega = self.Dr * np.cos(self.Cr * np.arctan(self.Br * alpha_r)) * self.Cr / (1 + (self.Br * alpha_r)**2) * self.Br * d_alpha_r_d_omega d_F_rx_d_v_x = - self.Cm2 * D - 2 * self.Cr2 * v_x d_F_rx_d_D = self.Cm1 - self.Cm2 * v_x ############################## # Helper Partial Derivatives # ############################## d_s_dot_d_e_y = kappa / (1-e_y*kappa)**2 * (v_x * np.cos(e_psi) - v_y * np.sin(e_psi)) d_s_dot_d_e_psi = 1 / (1 - e_y*kappa) * (-v_x * np.sin(e_psi) - v_y * np.cos(e_psi)) d_s_dot_d_v_x = 1 / (1 - e_y*kappa) * np.cos(e_psi) d_s_dot_d_v_y = -1 / (1 - e_y*kappa) * np.sin(e_psi) d_s_dot_d_omega = 0 d_s_dot_d_t = 0 d_s_dot_d_delta = 0 d_s_dot_d_D = 0 d_s_dot_d_kappa = e_y / (1-e_y*kappa)**2 * (v_x * np.cos(e_psi) - v_y * np.sin(e_psi)) # Check c_1 = (v_x * np.sin(e_psi) + v_y * np.cos(e_psi)) d_c_1_d_e_y = 0 d_c_1_d_e_psi = v_x * np.cos(e_psi) - v_y * np.sin(e_psi) d_c_1_d_v_x = np.sin(e_psi) d_c_1_d_v_y = np.cos(e_psi) d_c_1_d_omega = 0 d_c_1_d_t = 0 d_c_1_d_delta = 0 d_c_1_d_D = 0 d_c_1_d_kappa = 0 # Check d_v_x_dot_d_e_y = 0 d_v_x_dot_d_e_psi = 0 d_v_x_dot_d_v_x = (d_F_rx_d_v_x - d_F_fy_d_v_x * np.sin(delta)) / self.m d_v_x_dot_d_v_y = - (d_F_fy_d_v_y * np.sin(delta) + self.m * omega) / self.m d_v_x_dot_d_omega = - (d_F_fy_d_omega * np.sin(delta) + self.m * v_y) / self.m d_v_x_dot_d_t = 0 d_v_x_dot_d_delta = - (F_fy * np.cos(delta) + d_F_fy_d_delta * np.sin(delta)) / self.m d_v_x_dot_d_D = d_F_rx_d_D / self.m d_v_x_dot_d_kappa = 0 d_v_y_dot_d_e_y = 0 d_v_y_dot_d_e_psi = 0 d_v_y_dot_d_v_x = (d_F_ry_d_v_x + d_F_fy_d_v_x * np.cos(delta) - self.m * omega) / self.m d_v_y_dot_d_v_y = (d_F_ry_d_v_y + d_F_fy_d_v_y * np.cos(delta)) / self.m d_v_y_dot_d_omega = (d_F_ry_d_omega + d_F_fy_d_omega * np.cos(delta) - self.m * v_x) / self.m d_v_y_dot_d_t = 0 d_v_y_dot_d_delta = d_F_fy_d_delta * np.cos(delta) / self.m d_v_y_dot_d_D = 0 d_v_y_dot_d_kappa = 0 d_omega_dot_d_e_y = 0 d_omega_dot_d_e_psi = 0 d_omega_dot_d_v_x = (d_F_fy_d_v_x * self.lf * np.cos(delta) - d_F_ry_d_v_x * self.lr) / self.Iz d_omega_dot_d_v_y = (d_F_fy_d_v_y * self.lf * np.cos(delta) - d_F_fy_d_v_y * self.lr) / self.Iz d_omega_dot_d_omega = (d_F_fy_d_omega * self.lf * np.cos(delta) - d_F_fy_d_omega * self.lr) / self.Iz d_omega_dot_d_t = 0 d_omega_dot_d_delta = (- F_fy * np.sin(delta) + d_F_fy_d_delta * np.cos(delta)) / self.Iz d_omega_dot_d_D = 0 d_omega_dot_d_kappa = 0 ####################### # Partial Derivatives # ####################### # derivatives for E_Y d_e_y_d_e_y = -c_1 * d_s_dot_d_e_y / (s_dot**2) d_e_y_d_e_psi = (d_c_1_d_e_psi * s_dot - d_s_dot_d_e_psi * c_1) / (s_dot**2) d_e_y_d_v_x = (d_c_1_d_v_x * s_dot - d_s_dot_d_v_x * c_1) / (s_dot**2) d_e_y_d_v_y = (d_c_1_d_v_y * s_dot - d_s_dot_d_v_y * c_1) / (s_dot**2) d_e_y_d_omega = (d_c_1_d_omega * s_dot - d_s_dot_d_omega * c_1) / (s_dot**2) d_e_y_d_t = 0 d_e_y_d_D = 0 d_e_y_d_delta = (d_c_1_d_delta * s_dot - d_s_dot_d_delta * c_1) / (s_dot**2) d_e_y_d_kappa = -d_s_dot_d_kappa * c_1 / (s_dot**2) # derivatives for E_PSI d_e_psi_d_e_y = - omega * d_s_dot_d_e_y / (s_dot**2) d_e_psi_d_e_psi = - omega * d_s_dot_d_e_psi / (s_dot**2) d_e_psi_d_v_x = (- omega * d_s_dot_d_v_x) / (s_dot**2) d_e_psi_d_v_y = (- omega * d_s_dot_d_v_y) / (s_dot**2) d_e_psi_d_omega = (s_dot - omega * d_s_dot_d_omega) / (s_dot**2) d_e_psi_d_t = 0 d_e_psi_d_delta = (- omega * d_s_dot_d_delta) / (s_dot**2) d_e_psi_d_D = (- omega * d_s_dot_d_D) / (s_dot**2) d_e_psi_d_kappa = -d_s_dot_d_kappa * omega / (s_dot**2) - 1 # derivatives for V_X d_v_x_d_e_y = - d_s_dot_d_e_y * v_x_dot / (s_dot**2) d_v_x_d_e_psi = - d_s_dot_d_e_psi * v_x_dot / (s_dot**2) d_v_x_d_v_x = (d_v_x_dot_d_v_x * s_dot - d_s_dot_d_v_x * v_x_dot) / (s_dot**2) d_v_x_d_v_y = (d_v_x_dot_d_v_y * s_dot - d_s_dot_d_v_y * v_x_dot) / (s_dot**2) d_v_x_d_omega = (d_v_x_dot_d_omega * s_dot - d_s_dot_d_omega * v_x_dot) / (s_dot**2) d_v_x_d_t = 0 d_v_x_d_delta = (d_v_x_dot_d_delta * s_dot - d_s_dot_d_delta * v_x_dot) / (s_dot**2) d_v_x_d_D = d_v_x_dot_d_D * s_dot / (s_dot**2) d_v_x_d_kappa = -d_s_dot_d_kappa * v_x_dot / (s_dot**2) # derivatives for V_Y d_v_y_d_e_y = - d_s_dot_d_e_y * v_y_dot / (s_dot ** 2) d_v_y_d_e_psi = - d_s_dot_d_e_psi * v_y_dot / (s_dot ** 2) d_v_y_d_v_x = (d_v_y_dot_d_v_x * s_dot - d_s_dot_d_v_x * v_y_dot) / ( s_dot ** 2) d_v_y_d_v_y = (d_v_y_dot_d_v_y * s_dot - d_s_dot_d_v_y * v_y_dot) / ( s_dot ** 2) d_v_y_d_omega = (d_v_y_dot_d_omega * s_dot - d_s_dot_d_omega * v_y_dot) / ( s_dot ** 2) d_v_y_d_t = 0 d_v_y_d_delta = (d_v_y_dot_d_delta * s_dot - d_s_dot_d_delta * v_y_dot) / ( s_dot ** 2) d_v_y_d_D = d_v_y_dot_d_D * s_dot / (s_dot ** 2) d_v_y_d_kappa = -d_s_dot_d_kappa * v_y_dot / (s_dot ** 2) # derivatives for Omega d_omega_d_e_y = (d_omega_dot_d_e_y * s_dot - omega_dot * d_s_dot_d_e_y) / (s_dot**2) d_omega_d_e_psi = (d_omega_dot_d_e_psi * s_dot - omega_dot * d_s_dot_d_e_psi) / (s_dot**2) d_omega_d_v_x = (d_omega_dot_d_v_x * s_dot - omega_dot * d_s_dot_d_v_x) / (s_dot**2) d_omega_d_v_y = (d_omega_dot_d_v_y * s_dot - omega_dot * d_s_dot_d_v_y) / (s_dot**2) d_omega_d_omega = (d_omega_dot_d_omega * s_dot - omega_dot * d_s_dot_d_omega) / (s_dot**2) d_omega_d_t = (d_omega_dot_d_t * s_dot - omega_dot * d_s_dot_d_t) / (s_dot**2) d_omega_d_delta = (d_omega_dot_d_delta * s_dot - omega_dot * d_s_dot_d_delta) / (s_dot**2) d_omega_d_D = (d_omega_dot_d_D * s_dot - omega_dot * d_s_dot_d_D) / (s_dot**2) d_omega_d_kappa = (d_omega_dot_d_kappa * s_dot - omega_dot * d_s_dot_d_kappa) / (s_dot**2) # derivatives for T d_t_d_e_y = - d_s_dot_d_e_y / (s_dot**2) d_t_d_e_psi = - d_s_dot_d_e_psi / (s_dot ** 2) d_t_d_v_x = - d_s_dot_d_v_x / (s_dot ** 2) d_t_d_v_y = - d_s_dot_d_v_y / (s_dot ** 2) d_t_d_omega = - d_s_dot_d_omega / (s_dot ** 2) d_t_d_t = 0 d_t_d_delta = - d_s_dot_d_delta / (s_dot ** 2) d_t_d_D = 0 d_t_d_kappa = - d_s_dot_d_kappa / (s_dot ** 2) a_1 = np.array([d_e_y_d_e_y, d_e_y_d_e_psi, d_e_y_d_v_x, d_e_y_d_v_y, d_e_y_d_omega, d_e_y_d_t, d_e_y_d_kappa]) a_2 = np.array([d_e_psi_d_e_y, d_e_psi_d_e_psi, d_e_psi_d_v_x, d_e_psi_d_v_y, d_e_psi_d_omega, d_e_psi_d_t, d_e_psi_d_kappa]) a_3 = np.array([d_v_x_d_e_y, d_v_x_d_e_psi, d_v_x_d_v_x, d_v_x_d_v_y, d_v_x_d_omega, d_v_x_d_t, d_v_x_d_kappa]) a_4 = np.array([d_v_y_d_e_y, d_v_y_d_e_psi, d_v_y_d_v_x, d_v_y_d_v_y, d_v_y_d_omega, d_v_y_d_t, d_v_y_d_kappa]) a_5 = np.array([d_omega_d_e_y, d_omega_d_e_psi, d_omega_d_v_x, d_omega_d_v_y, d_omega_d_omega, d_omega_d_t, d_omega_d_kappa]) a_6 = np.array([d_t_d_e_y, d_t_d_e_psi, d_t_d_v_x, d_t_d_v_y, d_t_d_omega, d_t_d_t, d_t_d_kappa]) a_7 = np.array([0, 0, 0, 0, 0, 0, 1]) A = np.stack((a_1, a_2, a_3, a_4, a_5, a_6, a_7), axis=0) * delta_s A[0, 0] += 1 A[1, 1] += 1 A[2, 2] += 1 A[3, 3] += 1 A[4, 4] += 1 A[5, 5] += 1 b_1 = np.array([d_e_y_d_D, d_e_y_d_delta]) b_2 = np.array([d_e_psi_d_D, d_e_psi_d_delta]) b_3 = np.array([d_v_x_d_D, d_v_x_d_delta]) b_4 = np.array([d_v_y_d_D, d_v_y_d_delta]) b_5 = np.array([d_omega_d_D, d_omega_d_delta]) b_6 = np.array([d_t_d_D, d_t_d_delta]) b_7 = np.array([0, 0]) B = np.stack((b_1, b_2, b_3, b_4, b_5, b_6, b_7), axis=0) * delta_s # set system matrices return A, B