import numpy as np import cvxpy as cp ################## # MPC Controller # ################## class MPC: def __init__(self, model, T, Q, R, Qf, StateConstraints, InputConstraints, Reference): # Parameters self.T = T # horizon self.Q = Q # weight matrix state vector self.R = R # weight matrix input vector self.Qf = Qf # weight matrix terminal # Model self.model = model # Constraints self.state_constraints = StateConstraints self.input_constraints = InputConstraints # Reference self.reference = Reference # Current control and prediction self.current_control = None self.current_prediction = None def get_control(self): """ Get control signal given the current position of the car. Solves a finite time optimization problem based on the linearized car model. """ # get current waypoint curvature kappa_ref = self.model.reference_path.waypoints[self.model.wp_id].kappa # Set initial state x_0 = np.array(self.model.spatial_state[:] + [kappa_ref]) # Instantiate optimization variables x = cp.Variable((len(x_0), self.T + 1)) u = cp.Variable((2, self.T)) # Instantiate optimization parameters kappa = cp.Parameter(value=kappa_ref) # Initialize cost cost = 0 # Initialize constraints constraints = [x[:, 0] == x_0] for t in range(self.T): # update kappa value for next time step kappa.value = self.model.reference_path.waypoints[ self.model.wp_id + 1 + t].kappa - kappa_ref # set dynamic constraints constraints += [x[:-1, t + 1] == self.model.A[:-1, :] @ x[:, t] + self.model.B[:-1, :] @ u[:, t], x[-1, t + 1] == kappa] # set input constraints inputs = ['D', 'delta'] for input_name, constraint in self.input_constraints.items(): input_id = inputs.index(input_name) if constraint[0] is not None: constraints.append(-u[input_id, t] <= -constraint[0]) if constraint[1] is not None: constraints.append(u[input_id, t] <= constraint[1]) # Set state constraints for state_name, constraint in self.state_constraints.items(): state_id = self.model.spatial_state.list_states().\ index(state_name) if constraint[0] is not None: constraints.append(-x[state_id, t] <= -constraint[0]) if constraint[1] is not None: constraints.append(x[state_id, t] <= constraint[1]) # update cost function for states for state_name, state_reference in self.reference.items(): state_id = self.model.spatial_state.list_states().\ index(state_name) cost += cp.norm(x[state_id, t] - state_reference, 2) * self.Q[state_id, state_id] # update cost function for inputs cost += cp.norm(u[0, t], 2) * self.R[0, 0] cost += cp.norm(u[1, t], 2) * self.R[1, 1] # set state constraints for state_name, constraint in self.state_constraints.items(): state_id = self.model.spatial_state.list_states(). \ index(state_name) if constraint[0] is not None: constraints.append(-x[state_id, self.T] <= -constraint[0]) if constraint[1] is not None: constraints.append(x[state_id, self.T] <= constraint[1]) # update cost function for states for state_name, state_reference in self.reference.items(): state_id = self.model.spatial_state.list_states(). \ index(state_name) cost += cp.norm(x[state_id, self.T] - state_reference, 2) * \ self.Qf[state_id, state_id] # sums problem objectives and concatenates constraints. problem = cp.Problem(cp.Minimize(cost), constraints) problem.solve(solver=cp.ECOS) # Store computed control signals and associated prediction try: self.current_control = u.value self.current_prediction = self.update_prediction(x.value) except TypeError: print('No solution found!') exit(1) # RCH - get first control signal D_0 = u.value[0, 0] delta_0 = u.value[1, 0] return D_0, delta_0 def update_prediction(self, spatial_state_prediction): # containers for x and y coordinates of predicted states x_pred, y_pred = [], [] # get current waypoint ID wp_id_ = np.copy(self.model.wp_id) for t in range(self.T): associated_waypoint = self.model.reference_path.waypoints[wp_id_+t] predicted_temporal_state = self.model.s2t(associated_waypoint, spatial_state_prediction[:, t]) x_pred.append(predicted_temporal_state.x) y_pred.append(predicted_temporal_state.y) return x_pred, y_pred