diff --git a/MPC.py b/MPC.py index d14f891..c818bf0 100644 --- a/MPC.py +++ b/MPC.py @@ -178,6 +178,12 @@ class MPC_OSQP: # Current control and prediction self.current_prediction = None + # Counter for old control signals in case of infeasible problem + self.infeasibility_counter = 0 + + # Current control signals + self.current_control = None + # Initialize Optimization Problem self.optimizer = osqp.OSQP() @@ -282,10 +288,39 @@ class MPC_OSQP: # Solve optimization problem dec = self.optimizer.solve() - x = np.reshape(dec.x[:(self.N+1)*nx], (self.N+1, nx)) - delta = np.arctan(dec.x[-self.N] * self.model.l) - self.current_prediction = self.update_prediction(delta, x) - u = np.array([v, delta]) + + try: + # Get control signals + deltas = np.arctan(dec.x[-self.N:] * self.model.l) + delta = deltas[0] + + # Update control signals + self.current_control = deltas + + # Get predicted spatial states + x = np.reshape(dec.x[:(self.N+1)*nx], (self.N+1, nx)) + # Update predicted temporal states + self.current_prediction = self.update_prediction(delta, x) + + # Get current control signal + u = np.array([v, delta]) + + # if problem solved, reset infeasibility counter + self.infeasibility_counter = 0 + + except: + + print('Infeasible problem. Previously predicted' + ' control signal used!') + u = np.array([v, self.current_control + [self.infeasibility_counter+1]]) + + # increase infeasibility counter + self.infeasibility_counter += 1 + + if self.infeasibility_counter == (self.N - 1): + print('No control signal computed!') + exit(1) return u