diff --git a/spatial_bicycle_models.py b/spatial_bicycle_models.py new file mode 100644 index 0000000..db826ad --- /dev/null +++ b/spatial_bicycle_models.py @@ -0,0 +1,782 @@ +import numpy as np +import math +import time +import cvxpy as cp +from abc import ABC, abstractmethod + + +######################### +# Temporal State Vector # +######################### + +class TemporalState: + def __init__(self, x, y, psi, v_x=0, v_y=0): + """ + Temporal State Vector containing x, y coordinates and heading psi + :param x: x position in global coordinate system | [m] + :param y: y position in global coordinate system | [m] + :param psi: yaw angle | [rad] + :param v_x: velocity in x direction (car frame) | [m/s] + :param v_y: velocity in y direction (car frame) | [m/s] + """ + self.x = x + self.y = y + self.psi = psi + self.v_x = v_x + self.v_y = v_y + + +######################## +# Spatial State Vector # +######################## + +class SpatialState(ABC): + @abstractmethod + def __init__(self): + pass + + def __getitem__(self, item): + return list(vars(self).values())[item] + + def __len__(self): + return len(vars(self)) + + def list_states(self): + return list(vars(self).keys()) + + def __iadd__(self, other): + for state_id, state in enumerate(vars(self).values()): + vars(self)[list(vars(self).keys())[state_id]] += other[state_id] + return self + + +class SimpleSpatialState(SpatialState): + def __init__(self, e_y, e_psi, v): + """ + Temporal State Vector containing x, y coordinates and heading psi + :param e_y: orthogonal deviation from center-line | [m] + :param e_psi: yaw angle relative to path | [rad] + :param v: absolute velocity | [m/s] + """ + super(SimpleSpatialState, self).__init__() + + self.e_y = e_y + self.e_psi = e_psi + self.v = v + + +class ExtendedSpatialState(SpatialState): + def __init__(self, e_y, e_psi, v_x, v_y, omega, t): + """ + Temporal State Vector containing x, y coordinates and heading psi + :param e_y: orthogonal deviation from center-line | [m] + :param e_psi: yaw angle relative to path | [rad] + :param v: absolute velocity | [m/s] + """ + super(ExtendedSpatialState, self).__init__() + + self.e_y = e_y + self.e_psi = e_psi + self.v_x = v_x + self.v_y = v_y + self.omega = omega + self.t = t + + +#################################### +# Spatial Bicycle Model Base Class # +#################################### + +class SpatialBicycleModel(ABC): + def __init__(self, reference_path): + """ + Construct spatial bicycle model. + :param reference_path: reference path model is supposed to follow + """ + + # Precision + self.eps = 1e-12 + + # Reference Path + self.reference_path = reference_path + + # set initial distance traveled + self.s = 0.0 + + # set initial waypoint ID + self.wp_id = 0 + + # set initial waypoint + self.current_waypoint = self.reference_path.waypoints[self.wp_id] + + # initialize spatial state + self.spatial_state = None + + def s2t(self, reference_waypoint=None, predicted_state=None): + """ + Convert spatial state to temporal state. Either convert self.spatial + state with current waypoint as reference or provide reference waypoint + and (e_y, e_psi). + :return x, y, psi + """ + + # Compute spatial state for current waypoint if no waypoint given + if reference_waypoint is None and predicted_state is None: + + # compute temporal state variables + x = self.current_waypoint.x - self.spatial_state.e_y * np.sin( + self.current_waypoint.psi) + y = self.current_waypoint.y + self.spatial_state.e_y * np.cos( + self.current_waypoint.psi) + psi = self.current_waypoint.psi + self.spatial_state.e_psi + + else: + + # compute temporal state variables + x = reference_waypoint.x - predicted_state[0] * np.sin( + reference_waypoint.psi) + y = reference_waypoint.y + predicted_state[0] * np.cos( + reference_waypoint.psi) + psi = reference_waypoint.psi + predicted_state[1] + + return x, y, psi + + def drive(self, delta, D): + """ + Update states of spatial bicycle model. + :param delta: angular velocity | [rad] + :param D: acceleration command | [-1, 1] + """ + + # get spatial derivatives + spatial_derivatives = self.get_spatial_derivatives(delta, D) + + # get delta_s + next_waypoint = self.reference_path.waypoints[self.wp_id+1] + delta_s = next_waypoint - self.current_waypoint + + # update spatial state (euler method) + self.spatial_state += spatial_derivatives * delta_s + + # assert that unique projections exists + assert self.spatial_state.e_y < (1 / (self.current_waypoint.kappa + + self.eps)) + + # increase waypoint ID + self.wp_id += 1 + + # update current waypoint + self.current_waypoint = self.reference_path.waypoints[self.wp_id] + + # update temporal_state to match spatial state + self.temporal_state = self.s2t() + + # update s + self.s += delta_s + + # linearize model around new operating point + self.A, self.B = self.linearize() + + @abstractmethod + def get_spatial_derivatives(self, delta, D): + pass + + @abstractmethod + def linearize(self): + pass + + +######################## +# Simple Bicycle Model # +######################## + +class SimpleBicycleModel(SpatialBicycleModel): + def __init__(self, reference_path, e_y, e_psi, v): + """ + Construct spatial bicycle model. + :param e_y: initial deviation from reference path | [m] + :param e_psi: initial heading offset from reference path | [rad] + :param v: initial velocity | [m/s] + :param reference_path: reference path model is supposed to follow + """ + super(SimpleBicycleModel, self).__init__(reference_path) + + # Constants + self.C1 = 0.5 + self.C2 = 17.06 + self.Cm1 = 12.0 + self.Cm2 = 2.17 + self.Cr2 = 0.1 + self.Cr0 = 0.6 + + # Spatial state + self.spatial_state = SimpleSpatialState(e_y, e_psi, v) + + # Temporal state + self.temporal_state = self.s2t() + + # Linear System Matrices + self.A, self.B = self.linearize() + + def s2t(self, reference_waypoint=None, predicted_state=None): + """ + Convert spatial state to temporal state + :return temporal state equivalent to self.spatial_state + """ + + # compute velocity information + if predicted_state is None and reference_waypoint is None: + # get information from base class + x, y, psi = super(SimpleBicycleModel, self).s2t() + v_x = self.spatial_state.v + v_y = 0 + else: + # get information from base class + x, y, psi = super(SimpleBicycleModel, self).s2t(reference_waypoint, + predicted_state) + v_x = predicted_state[2] + v_y = 0 + + return TemporalState(x, y, psi, v_x, v_y) + + def get_velocities(self, delta): + """ + Compute relevant velocity components for current update. + :param delta: steering command + :return: velocities in x, y and waypoint direction + """ + + # approximation for small delta + v_x = self.spatial_state.v + v_y = self.spatial_state.v * delta * self.C1 + + # velocity along waypoint direction + v_sigma = v_x * np.cos(self.spatial_state.e_psi) - v_y * np.sin( + self.spatial_state.e_psi) + + return v_x, v_y, v_sigma + + def get_temporal_derivatives(self, v_sigma, delta, D): + """ + Compute temporal derivatives needed for state update. + :param v_sigma: velocity along the path + :param delta: steering command + :param D: dutycycle of DC motor + :return: temporal derivatives of distance, angle and velocity + """ + + # velocity along path + s_dot = 1 / (1 - (self.spatial_state.e_y * self.current_waypoint.kappa)) * v_sigma + + # angle rate of change + psi_dot = self.spatial_state.v * delta * self.C2 + + # acceleration + v_dot = (self.Cm1 - self.Cm2 * self.spatial_state.v) * D - self.Cr2 * ( + self.spatial_state.v ** 2) - self.Cr0 - ( + self.spatial_state.v * delta) ** 2 * self.C2 * self.C1 ** 2 + + return s_dot, psi_dot, v_dot + + def get_spatial_derivatives(self, delta, D): + """ + Compute spatial derivatives of all state variables for update. + :param delta: steering angle + :param D: duty-cycle + :return: spatial derivatives for all state variables + """ + + # Compute velocities + v_x, v_y, v_sigma = self.get_velocities(delta) + + # Compute state derivatives + s_dot, psi_dot, v_dot = self.get_temporal_derivatives(v_sigma, delta, + D) + + d_e_y = (self.spatial_state.v * np.sin(self.spatial_state.e_psi) + + self.spatial_state.v * delta * self.C1 * np.cos( + self.spatial_state.e_psi)) \ + / (s_dot + self.eps) + d_e_psi = (psi_dot / (s_dot + self.eps) - self.current_waypoint.kappa) + d_v = v_dot / (s_dot + self.eps) + d_t = 1 / (s_dot + self.eps) + + return np.array([d_e_y, d_e_psi, d_v]) + + def linearize(self, delta=0, D=0): + """ + Linearize the system equations around the current state and waypoint. + :param delta: reference steering angle + :param D: reference duty-cycle + """ + + # get current state + e_y = self.spatial_state.e_y + e_psi = self.spatial_state.e_psi + v = self.spatial_state.v + + # get information about current waypoint + kappa = self.reference_path.waypoints[self.wp_id].kappa + + # get delta_s + next_waypoint = self.reference_path.waypoints[self.wp_id+1] + delta_s = next_waypoint - self.current_waypoint + + # set helper variables + v_x = v + v_y = v * delta * self.C1 + + ############################## + # Helper Partial Derivatives # + ############################## + + s_dot = 1 / (1 - e_y*kappa) * (v_x * np.cos(e_psi) - v_y * np.sin(e_psi)) + d_s_dot_d_e_y = kappa / (1-e_y*kappa)**2 * (v_x * np.cos(e_psi) - v_y * np.sin(e_psi)) + d_s_dot_d_e_psi = 1 / (1 - e_y*kappa) * (-v_x * np.sin(e_psi) - v_y * np.cos(e_psi)) + d_s_dot_d_v = 1 / (1 - e_y*kappa) * (np.cos(e_psi) - delta * self.C1 * np.sin(e_psi)) + d_s_dot_d_t = 0 + d_s_dot_d_delta = 1 / (1 - e_y*kappa) * (- v * self.C1 * np.sin(e_psi)) + d_s_dot_d_D = 0 + d_s_dot_d_kappa = e_y / (1-e_y*kappa)**2 * (v_x * np.cos(e_psi) - v_y * np.sin(e_psi)) + # Check + + c_1 = (v_x * np.sin(e_psi) + v_y * np.cos(e_psi)) + d_c_1_d_e_y = 0 + d_c_1_d_e_psi = v_x * np.cos(e_psi) - v_y * np.sin(e_psi) + d_c_1_d_v = np.sin(e_psi) + self.C1 * delta * np.cos(e_psi) + d_c_1_d_t = 0 + d_c_1_d_delta = self.C1 * v * np.cos(e_psi) + d_c_1_d_D = 0 + # Check + + psi_dot = v * delta * self.C2 + d_psi_dot_d_e_y = 0 + d_psi_dot_d_e_psi = 0 + d_psi_dot_d_v = delta * self.C2 + d_psi_dot_d_t = 0 + d_psi_dot_d_delta = v * self.C2 + d_psi_dot_d_D = 0 + # Check + + v_dot = (self.Cm1 - self.Cm2 * v) * D - self.Cr2 * (v ** 2) - self.Cr0 - ( + v * delta) ** 2 * self.C2 * (self.C1 ** 2) + d_v_dot_d_e_y = 0 + d_v_dot_d_e_psi = 0 + d_v_dot_d_v = -self.Cm2 * D - 2 * self.Cr2 * v - 2 * v * (delta ** 2) * self.C2 * (self.C1 ** 2) + d_v_dot_d_t = 0 + d_v_dot_d_delta = -2 * (v ** 2) * delta * self.C2 * self.C1 ** 2 + d_v_dot_d_D = self.Cm1 - self.Cm2 * v + # Check + + ####################### + # Partial Derivatives # + ####################### + + # derivatives for E_Y + d_e_y_d_e_y = -c_1 * d_s_dot_d_e_y / (s_dot**2) + d_e_y_d_e_psi = (d_c_1_d_e_psi * s_dot - d_s_dot_d_e_psi * c_1) / (s_dot**2) + d_e_y_d_v = (d_c_1_d_v * s_dot - d_s_dot_d_v * c_1) / (s_dot**2) + d_e_y_d_t = 0 + d_e_y_d_D = 0 + d_e_y_d_delta = (d_c_1_d_delta * s_dot - d_s_dot_d_delta * c_1) / (s_dot**2) + d_e_y_d_kappa = -d_s_dot_d_kappa * c_1 / (s_dot**2) + + # derivatives for E_PSI + d_e_psi_d_e_y = - psi_dot * d_s_dot_d_e_y / (s_dot**2) + d_e_psi_d_e_psi = - psi_dot * d_s_dot_d_e_psi / (s_dot**2) + d_e_psi_d_v = (d_psi_dot_d_v * s_dot - psi_dot * d_s_dot_d_v) / (s_dot**2) + d_e_psi_d_t = 0 + d_e_psi_d_delta = (d_psi_dot_d_delta * s_dot - psi_dot * d_s_dot_d_delta) / (s_dot**2) + d_e_psi_d_D = 0 + d_e_psi_d_kappa = -d_s_dot_d_kappa * psi_dot / (s_dot**2) - 1 + + # derivatives for V + d_v_d_e_y = - d_s_dot_d_e_y * v_dot / (s_dot**2) + d_v_d_e_psi = - d_s_dot_d_e_psi * v_dot / (s_dot**2) + d_v_d_v = (d_v_dot_d_v * s_dot - d_s_dot_d_v * v_dot) / (s_dot**2) + d_v_d_t = 0 + d_v_d_delta = (d_v_dot_d_delta * s_dot - d_s_dot_d_delta * v_dot) / (s_dot**2) + d_v_d_D = d_v_dot_d_D * s_dot / (s_dot**2) + d_v_d_kappa = -d_s_dot_d_kappa * v_dot / (s_dot**2) + + # derivatives for T + d_t_d_e_y = - d_s_dot_d_e_y / (s_dot**2) + d_t_d_e_psi = - d_s_dot_d_e_psi / (s_dot ** 2) + d_t_d_v = - d_s_dot_d_v / (s_dot ** 2) + d_t_d_t = 0 + d_t_d_delta = - d_s_dot_d_delta / (s_dot ** 2) + d_t_d_D = 0 + d_t_d_kappa = - d_s_dot_d_kappa / (s_dot ** 2) + + a_1 = np.array([d_e_y_d_e_y, d_e_y_d_e_psi, d_e_y_d_v, d_e_y_d_kappa]) * delta_s + a_2 = np.array([d_e_psi_d_e_y, d_e_psi_d_e_psi, d_e_psi_d_v, d_e_psi_d_kappa]) * delta_s + a_3 = np.array([d_v_d_e_y, d_v_d_e_psi, d_v_d_v, d_v_d_kappa]) * delta_s + a_4 = np.array([0, 0, 0, 1]) + A = np.stack((a_1, a_2, a_3, a_4), axis=0) + A[0, 0] += 1 + A[1, 1] += 1 + A[2, 2] += 1 + + b_1 = np.array([d_e_y_d_D, d_e_y_d_delta]) * delta_s + b_2 = np.array([d_e_psi_d_D, d_e_psi_d_delta]) * delta_s + b_3 = np.array([d_v_d_D, d_v_d_delta]) * delta_s + b_4 = np.array([0, 0]) + B = np.stack((b_1, b_2, b_3, b_4), axis=0) + + # set system matrices + return A, B + + +########################## +# Extended Bicycle Model # +########################## + +class ExtendedBicycleModel(SpatialBicycleModel): + def __init__(self, reference_path, e_y, e_psi, v_x, v_y, omega, t): + """ + Construct spatial bicycle model. + :param e_y: initial deviation from reference path | [m] + :param e_psi: initial heading offset from reference path | [rad] + :param v: initial velocity | [m/s] + :param reference_path: reference path model is supposed to follow + """ + super(ExtendedBicycleModel, self).__init__(reference_path) + + # Constants + self.m = 0.041 + self.Iz = 27.8e-6 + self.lf = 0.029 + self.lr = 0.033 + + self.Cm1 = 0.287 + self.Cm2 = 0.0545 + self.Cr2 = 0.0518 + self.Cr0 = 0.00035 + + self.Br = 3.3852 + self.Cr = 1.2691 + self.Dr = 0.1737 + self.Bf = 2.579 + self.Cf = 1.2 + self.Df = 0.192 + + # Spatial state + self.spatial_state = ExtendedSpatialState(e_y, e_psi, v_x, v_y, omega, t) + + # Temporal state + self.temporal_state = self.s2t() + + # Linear System Matrices + self.A, self.B = self.linearize() + + def s2t(self, reference_waypoint=None, predicted_state=None): + """ + Convert spatial state to temporal state + :return temporal state equivalent to self.spatial_state + """ + + # compute velocity information + if predicted_state is None and reference_waypoint is None: + # get information from base class + x, y, psi = super(ExtendedBicycleModel, self).s2t() + v_x = self.spatial_state.v_x + v_y = self.spatial_state.v_y + else: + # get information from base class + x, y, psi = super(ExtendedBicycleModel, self).s2t(reference_waypoint, + predicted_state) + v_x = predicted_state[2] + v_y = predicted_state[3] + + return TemporalState(x, y, psi, v_x, v_y) + + def get_forces(self, delta, D): + """ + Compute forces required for temporal derivatives of v_x and v_y + :param delta: + :param D: + :return: + """ + + F_rx = (self.Cm1 - self.Cm2 * self.spatial_state.v_x) * D - self.Cr0 - self.Cr2 * self.spatial_state.v_x ** 2 + + alpha_f = - np.arctan2(self.spatial_state.omega*self.lf + self.spatial_state.v_y, self.spatial_state.v_x) + delta + F_fy = self.Df * np.sin(self.Cf*np.arctan(self.Bf*alpha_f)) + + alpha_r = np.arctan2(self.spatial_state.omega*self.lr - self.spatial_state.v_y, self.spatial_state.v_x) + F_ry = self.Dr * np.sin(self.Cr * np.arctan(self.Br*alpha_r)) + + return F_rx, F_fy, F_ry, alpha_f, alpha_r + + def get_temporal_derivatives(self, delta, F_rx, F_fy, F_ry): + """ + Compute temporal derivatives needed for state update. + :param delta: steering command + :param D: duty-cycle of DC motor + :return: temporal derivatives of distance, angle and velocity + """ + + # velocity along path + s_dot = 1 / (1 - (self.spatial_state.e_y * self.current_waypoint.kappa)) \ + * (self.spatial_state.v_x * np.cos(self.spatial_state.e_psi) + + self.spatial_state.v_y * np.sin(self.spatial_state.e_psi)) + + # velocity in x and y direction + v_x_dot = (F_rx - F_fy * np.sin(delta) + self.m * self.spatial_state. + v_y * self.spatial_state.omega) / self.m + v_y_dot = (F_ry + F_fy * np.cos(delta) - self.m * self.spatial_state. + v_x * self.spatial_state.omega) / self.m + + # omega dot + omega_dot = (F_fy * self.lf * np.cos(delta) - F_ry * self.lr) / self.Iz + + return s_dot, v_x_dot, v_y_dot, omega_dot + + def get_spatial_derivatives(self, delta, D): + """ + Compute spatial derivatives of all state variables for update. + :param delta: steering angle + :param psi_dot: heading rate of change + :param s_dot: velocity along path + :param v_dot: acceleration + :return: spatial derivatives for all state variables + """ + + # get required forces + F_rx, F_fy, F_ry, _, _ = self.get_forces(delta, D) + + # Compute state derivatives + s_dot, v_x_dot, v_y_dot, omega_dot = \ + self.get_temporal_derivatives(delta, F_rx, F_fy, F_ry) + + + d_e_y = (self.spatial_state.v_x * np.sin(self.spatial_state.e_psi) + + self.spatial_state.v_y * np.cos(self.spatial_state.e_psi)) \ + / (s_dot + self.eps) + d_e_psi = (self.spatial_state.omega / (s_dot + self.eps) - self.current_waypoint.kappa) + + d_v_x = v_x_dot / (s_dot + self.eps) + d_v_y = v_y_dot / (s_dot + self.eps) + d_omega = omega_dot / (s_dot + self.eps) + d_t = 1 / (s_dot + self.eps) + + return np.array([d_e_y, d_e_psi, d_v_x, d_v_y, d_omega, d_t]) + + def linearize(self, delta=0, D=0): + """ + Linearize the system equations around the current state and waypoint. + :param delta: reference steering angle + :param D: reference dutycycle + """ + + # get current state + e_y = self.spatial_state.e_y + e_psi = self.spatial_state.e_psi + v_x = self.spatial_state.v_x + v_y = self.spatial_state.v_y + omega = self.spatial_state.omega + t = self.spatial_state.t + + # get information about current waypoint + kappa = self.reference_path.waypoints[self.wp_id].kappa + + # get delta_s + next_waypoint = self.reference_path.waypoints[self.wp_id + 1] + delta_s = next_waypoint - self.current_waypoint + + # get temporal derivatives + F_rx, F_fy, F_ry, alpha_f, alpha_r = self.get_forces(delta, D) + s_dot, v_x_dot, v_y_dot, omega_dot = self.\ + get_temporal_derivatives(delta, F_rx, F_fy, F_ry) + + ############################## + # Forces Partial Derivatives # + ############################## + + d_alpha_f_d_v_x = 1 / (1 + ((omega * self.lf + v_y) / v_x)**2) * (omega * self.lf + v_y) / (v_x**2) + d_alpha_f_d_v_y = - 1 / (1 + ((omega * self.lf + v_y) / v_x)**2) / v_x + d_alpha_f_d_omega = - 1 / (1 + ((omega * self.lf + v_y) / v_x)**2) * (self.lf / v_x) + d_alpha_f_d_delta = 1 + + d_alpha_r_d_v_x = - 1 / (1 + ((omega * self.lr - v_y) / v_x)**2) * (omega * self.lr - v_y) / (v_x**2) + d_alpha_r_d_v_y = - 1 / (1 + ((omega * self.lr - v_y) / v_x)**2) / v_x + d_alpha_r_d_omega = 1 / (1 + ((omega * self.lr - v_y) / v_x)**2) * (self.lr * v_x) + + d_F_fy_d_v_x = self.Df * np.cos(self.Cf * np.arctan(self.Bf * alpha_f)) * self.Cf / (1 + (self.Bf * alpha_f)**2) * self.Bf * d_alpha_f_d_v_x + d_F_fy_d_v_y = self.Df * np.cos(self.Cf * np.arctan(self.Bf * alpha_f)) * self.Cf / (1 + (self.Bf * alpha_f)**2) * self.Bf * d_alpha_f_d_v_y + d_F_fy_d_omega = self.Df * np.cos(self.Cf * np.arctan(self.Bf * alpha_f)) * self.Cf / (1 + (self.Bf * alpha_f)**2) * self.Bf * d_alpha_f_d_omega + d_F_fy_d_delta = self.Df * np.cos(self.Cf * np.arctan(self.Bf * alpha_f)) * self.Cf / (1 + (self.Bf * alpha_f)**2) * self.Bf * d_alpha_f_d_delta + + d_F_ry_d_v_x = self.Dr * np.cos(self.Cr * np.arctan(self.Br * alpha_r)) * self.Cr / (1 + (self.Br * alpha_r)**2) * self.Br * d_alpha_r_d_v_x + d_F_ry_d_v_y = self.Dr * np.cos(self.Cr * np.arctan(self.Br * alpha_r)) * self.Cr / (1 + (self.Br * alpha_r)**2) * self.Br * d_alpha_r_d_v_y + d_F_ry_d_omega = self.Dr * np.cos(self.Cr * np.arctan(self.Br * alpha_r)) * self.Cr / (1 + (self.Br * alpha_r)**2) * self.Br * d_alpha_r_d_omega + + d_F_rx_d_v_x = - self.Cm2 * D - 2 * self.Cr2 * v_x + d_F_rx_d_D = self.Cm1 - self.Cm2 * v_x + + ############################## + # Helper Partial Derivatives # + ############################## + + d_s_dot_d_e_y = kappa / (1-e_y*kappa)**2 * (v_x * np.cos(e_psi) - v_y * np.sin(e_psi)) + d_s_dot_d_e_psi = 1 / (1 - e_y*kappa) * (-v_x * np.sin(e_psi) - v_y * np.cos(e_psi)) + d_s_dot_d_v_x = 1 / (1 - e_y*kappa) * np.cos(e_psi) + d_s_dot_d_v_y = -1 / (1 - e_y*kappa) * np.sin(e_psi) + d_s_dot_d_omega = 0 + d_s_dot_d_t = 0 + d_s_dot_d_delta = 0 + d_s_dot_d_D = 0 + d_s_dot_d_kappa = e_y / (1-e_y*kappa)**2 * (v_x * np.cos(e_psi) - v_y * np.sin(e_psi)) + # Check + + c_1 = (v_x * np.sin(e_psi) + v_y * np.cos(e_psi)) + d_c_1_d_e_y = 0 + d_c_1_d_e_psi = v_x * np.cos(e_psi) - v_y * np.sin(e_psi) + d_c_1_d_v_x = np.sin(e_psi) + d_c_1_d_v_y = np.cos(e_psi) + d_c_1_d_omega = 0 + d_c_1_d_t = 0 + d_c_1_d_delta = 0 + d_c_1_d_D = 0 + d_c_1_d_kappa = 0 + # Check + + d_v_x_dot_d_e_y = 0 + d_v_x_dot_d_e_psi = 0 + d_v_x_dot_d_v_x = (d_F_rx_d_v_x - d_F_fy_d_v_x * np.sin(delta)) / self.m + d_v_x_dot_d_v_y = - (d_F_fy_d_v_y * np.sin(delta) + self.m * omega) / self.m + d_v_x_dot_d_omega = - (d_F_fy_d_omega * np.sin(delta) + self.m * v_y) / self.m + d_v_x_dot_d_t = 0 + d_v_x_dot_d_delta = - (F_fy * np.cos(delta) + d_F_fy_d_delta * np.sin(delta)) / self.m + d_v_x_dot_d_D = d_F_rx_d_D / self.m + d_v_x_dot_d_kappa = 0 + + d_v_y_dot_d_e_y = 0 + d_v_y_dot_d_e_psi = 0 + d_v_y_dot_d_v_x = (d_F_ry_d_v_x + d_F_fy_d_v_x * np.cos(delta) - self.m * omega) / self.m + d_v_y_dot_d_v_y = (d_F_ry_d_v_y + d_F_fy_d_v_y * np.cos(delta)) / self.m + d_v_y_dot_d_omega = (d_F_ry_d_omega + d_F_fy_d_omega * np.cos(delta) - self.m * v_x) / self.m + d_v_y_dot_d_t = 0 + d_v_y_dot_d_delta = d_F_fy_d_delta * np.cos(delta) / self.m + d_v_y_dot_d_D = 0 + d_v_y_dot_d_kappa = 0 + + d_omega_dot_d_e_y = 0 + d_omega_dot_d_e_psi = 0 + d_omega_dot_d_v_x = (d_F_fy_d_v_x * self.lf * np.cos(delta) - d_F_ry_d_v_x * self.lr) / self.Iz + d_omega_dot_d_v_y = (d_F_fy_d_v_y * self.lf * np.cos(delta) - d_F_fy_d_v_y * self.lr) / self.Iz + d_omega_dot_d_omega = (d_F_fy_d_omega * self.lf * np.cos(delta) - d_F_fy_d_omega * self.lr) / self.Iz + d_omega_dot_d_t = 0 + d_omega_dot_d_delta = (- F_fy * np.sin(delta) + d_F_fy_d_delta * np.cos(delta)) / self.Iz + d_omega_dot_d_D = 0 + d_omega_dot_d_kappa = 0 + + ####################### + # Partial Derivatives # + ####################### + + # derivatives for E_Y + d_e_y_d_e_y = -c_1 * d_s_dot_d_e_y / (s_dot**2) + d_e_y_d_e_psi = (d_c_1_d_e_psi * s_dot - d_s_dot_d_e_psi * c_1) / (s_dot**2) + d_e_y_d_v_x = (d_c_1_d_v_x * s_dot - d_s_dot_d_v_x * c_1) / (s_dot**2) + d_e_y_d_v_y = (d_c_1_d_v_y * s_dot - d_s_dot_d_v_y * c_1) / (s_dot**2) + d_e_y_d_omega = (d_c_1_d_omega * s_dot - d_s_dot_d_omega * c_1) / (s_dot**2) + d_e_y_d_t = 0 + d_e_y_d_D = 0 + d_e_y_d_delta = (d_c_1_d_delta * s_dot - d_s_dot_d_delta * c_1) / (s_dot**2) + d_e_y_d_kappa = -d_s_dot_d_kappa * c_1 / (s_dot**2) + + # derivatives for E_PSI + d_e_psi_d_e_y = - omega * d_s_dot_d_e_y / (s_dot**2) + d_e_psi_d_e_psi = - omega * d_s_dot_d_e_psi / (s_dot**2) + d_e_psi_d_v_x = (- omega * d_s_dot_d_v_x) / (s_dot**2) + d_e_psi_d_v_y = (- omega * d_s_dot_d_v_y) / (s_dot**2) + d_e_psi_d_omega = (s_dot - omega * d_s_dot_d_omega) / (s_dot**2) + d_e_psi_d_t = 0 + d_e_psi_d_delta = (- omega * d_s_dot_d_delta) / (s_dot**2) + d_e_psi_d_D = (- omega * d_s_dot_d_D) / (s_dot**2) + d_e_psi_d_kappa = -d_s_dot_d_kappa * omega / (s_dot**2) - 1 + + # derivatives for V_X + d_v_x_d_e_y = - d_s_dot_d_e_y * v_x_dot / (s_dot**2) + d_v_x_d_e_psi = - d_s_dot_d_e_psi * v_x_dot / (s_dot**2) + d_v_x_d_v_x = (d_v_x_dot_d_v_x * s_dot - d_s_dot_d_v_x * v_x_dot) / (s_dot**2) + d_v_x_d_v_y = (d_v_x_dot_d_v_y * s_dot - d_s_dot_d_v_y * v_x_dot) / (s_dot**2) + d_v_x_d_omega = (d_v_x_dot_d_omega * s_dot - d_s_dot_d_omega * v_x_dot) / (s_dot**2) + d_v_x_d_t = 0 + d_v_x_d_delta = (d_v_x_dot_d_delta * s_dot - d_s_dot_d_delta * v_x_dot) / (s_dot**2) + d_v_x_d_D = d_v_x_dot_d_D * s_dot / (s_dot**2) + d_v_x_d_kappa = -d_s_dot_d_kappa * v_x_dot / (s_dot**2) + + # derivatives for V_Y + d_v_y_d_e_y = - d_s_dot_d_e_y * v_y_dot / (s_dot ** 2) + d_v_y_d_e_psi = - d_s_dot_d_e_psi * v_y_dot / (s_dot ** 2) + d_v_y_d_v_x = (d_v_y_dot_d_v_x * s_dot - d_s_dot_d_v_x * v_y_dot) / ( + s_dot ** 2) + d_v_y_d_v_y = (d_v_y_dot_d_v_y * s_dot - d_s_dot_d_v_y * v_y_dot) / ( + s_dot ** 2) + d_v_y_d_omega = (d_v_y_dot_d_omega * s_dot - d_s_dot_d_omega * v_y_dot) / ( + s_dot ** 2) + d_v_y_d_t = 0 + d_v_y_d_delta = (d_v_y_dot_d_delta * s_dot - d_s_dot_d_delta * v_y_dot) / ( + s_dot ** 2) + d_v_y_d_D = d_v_y_dot_d_D * s_dot / (s_dot ** 2) + d_v_y_d_kappa = -d_s_dot_d_kappa * v_y_dot / (s_dot ** 2) + + # derivatives for Omega + d_omega_d_e_y = (d_omega_dot_d_e_y * s_dot - omega_dot * d_s_dot_d_e_y) / (s_dot**2) + d_omega_d_e_psi = (d_omega_dot_d_e_psi * s_dot - omega_dot * d_s_dot_d_e_psi) / (s_dot**2) + d_omega_d_v_x = (d_omega_dot_d_v_x * s_dot - omega_dot * d_s_dot_d_v_x) / (s_dot**2) + d_omega_d_v_y = (d_omega_dot_d_v_y * s_dot - omega_dot * d_s_dot_d_v_y) / (s_dot**2) + d_omega_d_omega = (d_omega_dot_d_omega * s_dot - omega_dot * d_s_dot_d_omega) / (s_dot**2) + d_omega_d_t = (d_omega_dot_d_t * s_dot - omega_dot * d_s_dot_d_t) / (s_dot**2) + d_omega_d_delta = (d_omega_dot_d_delta * s_dot - omega_dot * d_s_dot_d_delta) / (s_dot**2) + d_omega_d_D = (d_omega_dot_d_D * s_dot - omega_dot * d_s_dot_d_D) / (s_dot**2) + d_omega_d_kappa = (d_omega_dot_d_kappa * s_dot - omega_dot * d_s_dot_d_kappa) / (s_dot**2) + + # derivatives for T + d_t_d_e_y = - d_s_dot_d_e_y / (s_dot**2) + d_t_d_e_psi = - d_s_dot_d_e_psi / (s_dot ** 2) + d_t_d_v_x = - d_s_dot_d_v_x / (s_dot ** 2) + d_t_d_v_y = - d_s_dot_d_v_y / (s_dot ** 2) + d_t_d_omega = - d_s_dot_d_omega / (s_dot ** 2) + d_t_d_t = 0 + d_t_d_delta = - d_s_dot_d_delta / (s_dot ** 2) + d_t_d_D = 0 + d_t_d_kappa = - d_s_dot_d_kappa / (s_dot ** 2) + + a_1 = np.array([d_e_y_d_e_y, d_e_y_d_e_psi, d_e_y_d_v_x, d_e_y_d_v_y, d_e_y_d_omega, d_e_y_d_t, d_e_y_d_kappa]) + a_2 = np.array([d_e_psi_d_e_y, d_e_psi_d_e_psi, d_e_psi_d_v_x, d_e_psi_d_v_y, d_e_psi_d_omega, d_e_psi_d_t, d_e_psi_d_kappa]) + a_3 = np.array([d_v_x_d_e_y, d_v_x_d_e_psi, d_v_x_d_v_x, d_v_x_d_v_y, d_v_x_d_omega, d_v_x_d_t, d_v_x_d_kappa]) + a_4 = np.array([d_v_y_d_e_y, d_v_y_d_e_psi, d_v_y_d_v_x, d_v_y_d_v_y, d_v_y_d_omega, d_v_y_d_t, d_v_y_d_kappa]) + a_5 = np.array([d_omega_d_e_y, d_omega_d_e_psi, d_omega_d_v_x, d_omega_d_v_y, d_omega_d_omega, d_omega_d_t, d_omega_d_kappa]) + a_6 = np.array([d_t_d_e_y, d_t_d_e_psi, d_t_d_v_x, d_t_d_v_y, d_t_d_omega, d_t_d_t, d_t_d_kappa]) + a_7 = np.array([0, 0, 0, 0, 0, 0, 1]) + A = np.stack((a_1, a_2, a_3, a_4, a_5, a_6, a_7), axis=0) * delta_s + A[0, 0] += 1 + A[1, 1] += 1 + A[2, 2] += 1 + A[3, 3] += 1 + A[4, 4] += 1 + A[5, 5] += 1 + b_1 = np.array([d_e_y_d_D, d_e_y_d_delta]) + b_2 = np.array([d_e_psi_d_D, d_e_psi_d_delta]) + b_3 = np.array([d_v_x_d_D, d_v_x_d_delta]) + b_4 = np.array([d_v_y_d_D, d_v_y_d_delta]) + b_5 = np.array([d_omega_d_D, d_omega_d_delta]) + b_6 = np.array([d_t_d_D, d_t_d_delta]) + b_7 = np.array([0, 0]) + B = np.stack((b_1, b_2, b_3, b_4, b_5, b_6, b_7), axis=0) * delta_s + + # set system matrices + return A, B + + +if __name__ == '__main__': + + state = ExtendedSpatialState(0, 1, 2, 3, 4, 5) + print(state[0:2]) + print(len(state)) + print(state.list_states()) + state += np.array([1, 1, 1, 2, 1, 1]) + print(vars(state)) \ No newline at end of file