Add speed profile to reference path.

Include speed tracking in MPC
master
matssteinweg 2019-12-07 00:29:55 +01:00
parent 7e7ff06029
commit 4e9959a1b1
4 changed files with 126 additions and 53 deletions

18
MPC.py
View File

@ -13,8 +13,7 @@ PREDICTION = '#BA4A00'
class MPC:
def __init__(self, model, N, Q, R, QN, StateConstraints, InputConstraints,
velocity_reference):
def __init__(self, model, N, Q, R, QN, StateConstraints, InputConstraints):
"""
Constructor for the Model Predictive Controller.
:param model: bicycle model object to be controlled
@ -24,7 +23,6 @@ class MPC:
:param QN: final state cost matrix
:param StateConstraints: dictionary of state constraints
:param InputConstraints: dictionary of input constraints
:param velocity_reference: reference value for velocity
"""
# Parameters
@ -44,9 +42,6 @@ class MPC:
self.state_constraints = StateConstraints
self.input_constraints = InputConstraints
# Velocity reference
self.v_ref = velocity_reference
# Current control and prediction
self.current_prediction = None
@ -54,7 +49,7 @@ class MPC:
self.infeasibility_counter = 0
# Current control signals
self.current_control = np.ones((self.nu*self.N)) * velocity_reference
self.current_control = np.ones((self.nu*self.N))
# Initialize Optimization Problem
self.optimizer = osqp.OSQP()
@ -90,19 +85,20 @@ class MPC:
next_waypoint = self.model.reference_path.get_waypoint(self.model.wp_id + n + 1)
delta_s = next_waypoint - current_waypoint
kappa_ref = current_waypoint.kappa
v_ref = current_waypoint.v_ref
# Compute LTV matrices
f, A_lin, B_lin = self.model.linearize(self.v_ref, kappa_ref, delta_s)
f, A_lin, B_lin = self.model.linearize(v_ref, kappa_ref, delta_s)
A[(n+1) * self.nx: (n+2)*self.nx, n * self.nx:(n+1)*self.nx] = A_lin
B[(n+1) * self.nx: (n+2)*self.nx, n * self.nu:(n+1)*self.nu] = B_lin
# Set reference for input signal
ur[n*self.nu:(n+1)*self.nu] = np.array([self.v_ref, kappa_ref])
ur[n*self.nu:(n+1)*self.nu] = np.array([v_ref, kappa_ref])
# Compute equality constraint offset (B*ur)
uq[n * self.nx:(n+1)*self.nx] = B_lin.dot(np.array
([self.v_ref, kappa_ref])) - f
([v_ref, kappa_ref])) - f
# Compute dynamic constraints on e_y
lb, ub = self.model.reference_path.update_bounds(
lb, ub, cells = self.model.reference_path.update_bounds(
self.model.wp_id + n, self.model.safety_margin[1])
xmin_dyn[self.nx * n] = lb
xmax_dyn[self.nx * n] = ub

1
map.py
View File

@ -56,6 +56,7 @@ class Map:
if __name__ == '__main__':
map = Map('map_floor2.png')
plt.imshow(map.data, cmap='gray')

View File

@ -4,7 +4,8 @@ from map import Map
from skimage.draw import line
import matplotlib.pyplot as plt
import matplotlib.patches as plt_patches
from scipy.signal import savgol_filter
from scipy import sparse
import osqp
# Colors
DRIVABLE_AREA = '#BDC3C7'
@ -31,7 +32,10 @@ class Waypoint:
self.psi = psi
self.kappa = kappa
# information about drivable area at waypoint
# Reference velocity at this waypoint according to speed profile
self.v_ref = None
# Information about drivable area at waypoint
# upper and lower bound of drivable area orthogonal to
# waypoint orientation
self.lb = None
@ -112,7 +116,7 @@ class ReferencePath:
# Look ahead distance for path averaging
self.smoothing_distance = smoothing_distance
# Circular
# Circular flag
self.circular = circular
# List of waypoint objects
@ -308,6 +312,88 @@ class ReferencePath:
return min_width, min_cell
def compute_speed_profile(self, Constraints):
"""
Compute a speed profile for the path. Assign a reference velocity
to each waypoint based on its curvature.
"""
# Set optimization horizon
N = self.n_waypoints - 1
# Constraints
a_min = np.ones(N-1) * Constraints['a_min']
a_max = np.ones(N-1) * Constraints['a_max']
v_min = np.ones(N) * Constraints['v_min']
v_max = np.ones(N) * Constraints['v_max']
# Maximum lateral acceleration
ay_max = Constraints['ay_max']
# Inequality Matrix
D1 = np.zeros((N-1, N))
# Iterate over horizon
for i in range(N):
# Get information about current waypoint
current_waypoint = self.get_waypoint(i)
next_waypoint = self.get_waypoint(i+1)
# distance between waypoints
li = next_waypoint - current_waypoint
# curvature of waypoint
ki = current_waypoint.kappa
# Fill operator matrix
# dynamics of acceleration
if i < N-1:
D1[i, i:i+2] = np.array([-1/(2*li), 1/(2*li)])
# Compute dynamic constraint on velocity
v_max_dyn = np.sqrt(ay_max / (np.abs(ki) + self.eps))
if v_max_dyn < v_max[i]:
v_max[i] = v_max_dyn
# Construct inequality matrix
D1 = sparse.csc_matrix(D1)
D2 = sparse.eye(N)
D = sparse.vstack([D1, D2], format='csc')
# Get upper and lower bound vectors for inequality constraints
l = np.hstack([a_min, v_min])
u = np.hstack([a_max, v_max])
# Set cost matrices
P = sparse.eye(N, format='csc')
q = -1 * v_max
# Solve optimization problem
problem = osqp.OSQP()
problem.setup(P=P, q=q, A=D, l=l, u=u, verbose=False)
speed_profile = problem.solve().x
# Assign reference velocity to every waypoint
for i, wp in enumerate(self.waypoints[:-1]):
wp.v_ref = speed_profile[i]
self.waypoints[-1].v_ref = self.waypoints[-2].v_ref
def get_waypoint(self, wp_id):
"""
Get waypoint corresponding to wp_id. Circular indexing supported.
:param wp_id: unique waypoint ID
:return: waypoint object
"""
# Allow circular indexing if circular path
if wp_id >= self.n_waypoints and self.circular:
wp_id = np.mod(wp_id, self.n_waypoints)
# Terminate execution if end of path reached
elif wp_id >= self.n_waypoints and not self.circular:
print('Reached end of path!')
exit(1)
return self.waypoints[wp_id]
def update_bounds(self, wp_id, safety_margin):
"""
Compute upper and lower bounds of the drivable area orthogonal to
@ -341,7 +427,7 @@ class ReferencePath:
lb_o = (x, y)
# If cell is occupied, end segment. Update best segment if current
# segment is larger than previous best segment. Then, reset upper
# and lower bound to current cell.
# and lower bound to current cell
if self.map.data[y, x] == 0 or (x, y) == lb_p:
if np.sqrt((ub_o[0]-lb_o[0])**2+(ub_o[1]-lb_o[1])**2) > \
np.sqrt((ub_ls[0]-lb_ls[0])**2+(ub_ls[1]-lb_ls[1])**2):
@ -380,11 +466,13 @@ class ReferencePath:
# Compute absolute angle of bound cell
angle_ub = np.mod(math.pi/2 + wp.psi + math.pi, 2 * math.pi) - math.pi
angle_lb = np.mod(-math.pi/2 + wp.psi + math.pi, 2 * math.pi) - math.pi
# Compute cell on bound for computed distance ub and lb
ub_ls = wp.x + ub * np.cos(angle_ub), wp.y + ub * np.sin(angle_ub)
lb_ls = wp.x - lb * np.cos(angle_lb), wp.y - lb * np.sin(angle_lb)
border_cells = (ub_ls, lb_ls)
return lb, ub
return lb, ub, border_cells
def add_obstacles(self, obstacles):
"""
@ -397,8 +485,12 @@ class ReferencePath:
# Iterate over list of obstacles
for obstacle in obstacles:
# Compute radius of circular object in pixels
radius_px = int(np.ceil(obstacle.radius / self.map.resolution))
# Get center coordinates of obstacle in map coordinates
cx_px, cy_px = self.map.w2m(obstacle.cx, obstacle.cy)
# Add circular object to map
y, x = np.ogrid[-radius_px: radius_px, -radius_px: radius_px]
index = x ** 2 + y ** 2 <= radius_px ** 2
self.map.data[cy_px-radius_px:cy_px+radius_px, cx_px-radius_px:
@ -439,7 +531,7 @@ class ReferencePath:
wp_lb_y = np.array([wp.border_cells[1][1] for wp in self.waypoints])
# Plot waypoints
plt.scatter(wp_x, wp_y, color=WAYPOINTS, s=3)
plt.scatter(wp_x, wp_y, color=WAYPOINTS, s=10)
# Plot arrows indicating drivable area
if display_drivable_area:
@ -463,11 +555,6 @@ class ReferencePath:
br_y = np.array([wp.border_cells[1][1] for wp in
self.waypoints] +
[self.waypoints[0].border_cells[1][1]])
# Smooth border
# bl_x = savgol_filter(bl_x, 15, 9)
# bl_y = savgol_filter(bl_y, 15, 9)
# br_x = savgol_filter(br_x, 15, 9)
# br_y = savgol_filter(br_y, 15, 9)
# If circular path, connect start and end point
if self.circular:
@ -484,22 +571,11 @@ class ReferencePath:
for obstacle in self.obstacles:
obstacle.show()
def get_waypoint(self, wp_id):
if wp_id >= self.n_waypoints and self.circular:
wp_id = np.mod(wp_id, self.n_waypoints)
elif wp_id >= self.n_waypoints and not self.circular:
print('Reached end of path!')
exit(1)
return self.waypoints[wp_id]
if __name__ == '__main__':
# Select Path | 'Race' or 'Q'
path = 'Q'
path = 'Race'
# Create Map
if path == 'Race':
@ -512,7 +588,7 @@ if __name__ == '__main__':
# Specify path resolution
path_resolution = 0.05 # m / wp
reference_path = ReferencePath(map, wp_x, wp_y, path_resolution,
smoothing_distance=5, max_width=0.22, n_extension=30,
smoothing_distance=5, max_width=0.15,
circular=True)
# Add obstacles
obs1 = Obstacle(cx=0.0, cy=0.0, radius=0.05)
@ -534,7 +610,7 @@ if __name__ == '__main__':
path_resolution = 0.20 # m / wp
reference_path = ReferencePath(map, wp_x, wp_y, path_resolution,
smoothing_distance=5, max_width=1.5,
n_extension=30, circular=False)
circular=False)
obs1 = Obstacle(cx=-6.3, cy=-11.1, radius=0.20)
obs2 = Obstacle(cx=-2.2, cy=-6.8, radius=0.25)
obs3 = Obstacle(cx=1.7, cy=-1.0, radius=0.15)

View File

@ -5,8 +5,6 @@ from spatial_bicycle_models import BicycleModel
import matplotlib.pyplot as plt
from MPC import MPC
from scipy import sparse
from time import time
from lidar_model import LidarModel
if __name__ == '__main__':
@ -65,6 +63,7 @@ if __name__ == '__main__':
e_y_0 = 0.0
e_psi_0 = 0.0
t_0 = 0.0
V_MAX = 2.5
car = BicycleModel(length=0.12, width=0.06, reference_path=reference_path,
e_y=e_y_0, e_psi=e_psi_0, t=t_0)
@ -78,18 +77,15 @@ if __name__ == '__main__':
R = sparse.diags([1.0, 0.0])
QN = sparse.diags([0.0, 0.0, 0.0])
InputConstraints = {'umin': np.array([0.0, -np.tan(0.66)/car.l]),
'umax': np.array([2.5, np.tan(0.66)/car.l])}
'umax': np.array([V_MAX, np.tan(0.66)/car.l])}
StateConstraints = {'xmin': np.array([-np.inf, -np.inf, -np.inf]),
'xmax': np.array([np.inf, np.inf, np.inf])}
velocity_reference = 1.5 # m/s
mpc = MPC(car, N, Q, R, QN, StateConstraints, InputConstraints,
velocity_reference)
mpc = MPC(car, N, Q, R, QN, StateConstraints, InputConstraints)
#########
# LiDAR #
#########
sensor = LidarModel(FoV=90, range=0.25, resolution=4.0)
# Compute speed profile
SpeedProfileConstraints = {'a_min': -2.0, 'a_max': 2.0,
'v_min': 0, 'v_max': V_MAX, 'ay_max': 5.0}
car.reference_path.compute_speed_profile(SpeedProfileConstraints)
##############
# Simulation #
@ -103,6 +99,7 @@ if __name__ == '__main__':
# Logging containers
x_log = [car.temporal_state.x]
y_log = [car.temporal_state.y]
v_log = [0.0]
# Until arrival at end of path
while car.s < reference_path.length:
@ -116,6 +113,7 @@ if __name__ == '__main__':
# log
x_log.append(car.temporal_state.x)
y_log.append(car.temporal_state.y)
v_log.append(u[0])
###################
# Plot Simulation #
@ -123,6 +121,8 @@ if __name__ == '__main__':
# Plot path and drivable area
reference_path.show()
plt.scatter(x_log, y_log, c=v_log, s=10)
plt.colorbar()
# Plot MPC prediction
mpc.show_prediction()
@ -130,12 +130,12 @@ if __name__ == '__main__':
# Plot car
car.show()
# Increase simulation time
t += Ts
# Set figure title
plt.title('MPC Simulation: v(t): {:.2f}, delta(t): {:.2f}, Duration: '
'{:.2f} s'.
format(u[0], u[1], t))
'{:.2f} s'.format(u[0], u[1], t))
plt.pause(0.01)
print('Final Time: {:.2f}'.format(t))
plt.close()
plt.pause(0.0001)
plt.show()