Create MPC.py

MPC Controller
master
matssteinweg 2019-11-23 16:46:14 +01:00
parent c7c0534fef
commit 4dc24ef368
1 changed files with 145 additions and 0 deletions

145
MPC.py Normal file
View File

@ -0,0 +1,145 @@
import numpy as np
import cvxpy as cp
##################
# MPC Controller #
##################
class MPC:
def __init__(self, model, T, Q, R, Qf, StateConstraints, InputConstraints, Reference):
# Parameters
self.T = T # horizon
self.Q = Q # weight matrix state vector
self.R = R # weight matrix input vector
self.Qf = Qf # weight matrix terminal
# Model
self.model = model
# Constraints
self.state_constraints = StateConstraints
self.input_constraints = InputConstraints
# Reference
self.reference = Reference
# Current control and prediction
self.current_control = None
self.current_prediction = None
def get_control(self):
"""
Get control signal given the current position of the car. Solves a
finite time optimization problem based on the linearized car model.
"""
# get current waypoint curvature
kappa_ref = self.model.reference_path.waypoints[self.model.wp_id].kappa
# Set initial state
x_0 = np.array(self.model.spatial_state[:] + [kappa_ref])
# Instantiate optimization variables
x = cp.Variable((len(x_0), self.T + 1))
u = cp.Variable((2, self.T))
# Instantiate optimization parameters
kappa = cp.Parameter(value=kappa_ref)
# Initialize cost
cost = 0
# Initialize constraints
constraints = [x[:, 0] == x_0]
for t in range(self.T):
# update kappa value for next time step
kappa.value = self.model.reference_path.waypoints[
self.model.wp_id + 1 + t].kappa - kappa_ref
# set dynamic constraints
constraints += [x[:-1, t + 1] == self.model.A[:-1, :]
@ x[:, t] + self.model.B[:-1, :] @ u[:, t],
x[-1, t + 1] == kappa]
# set input constraints
inputs = ['D', 'delta']
for input_name, constraint in self.input_constraints.items():
input_id = inputs.index(input_name)
if constraint[0] is not None:
constraints.append(-u[input_id, t] <= -constraint[0])
if constraint[1] is not None:
constraints.append(u[input_id, t] <= constraint[1])
# Set state constraints
for state_name, constraint in self.state_constraints.items():
state_id = self.model.spatial_state.list_states().\
index(state_name)
if constraint[0] is not None:
constraints.append(-x[state_id, t] <= -constraint[0])
if constraint[1] is not None:
constraints.append(x[state_id, t] <= constraint[1])
# update cost function for states
for state_name, state_reference in self.reference.items():
state_id = self.model.spatial_state.list_states().\
index(state_name)
cost += cp.norm(x[state_id, t] - state_reference, 2) * self.Q[state_id, state_id]
# update cost function for inputs
cost += cp.norm(u[0, t], 2) * self.R[0, 0]
cost += cp.norm(u[1, t], 2) * self.R[1, 1]
# set state constraints
for state_name, constraint in self.state_constraints.items():
state_id = self.model.spatial_state.list_states(). \
index(state_name)
if constraint[0] is not None:
constraints.append(-x[state_id, self.T] <= -constraint[0])
if constraint[1] is not None:
constraints.append(x[state_id, self.T] <= constraint[1])
# update cost function for states
for state_name, state_reference in self.reference.items():
state_id = self.model.spatial_state.list_states(). \
index(state_name)
cost += cp.norm(x[state_id, self.T] - state_reference, 2) * \
self.Qf[state_id, state_id]
# sums problem objectives and concatenates constraints.
problem = cp.Problem(cp.Minimize(cost), constraints)
problem.solve(solver=cp.ECOS)
# Store computed control signals and associated prediction
try:
self.current_control = u.value
self.current_prediction = self.update_prediction(x.value)
except TypeError:
print('No solution found!')
exit(1)
# RCH - get first control signal
D_0 = u.value[0, 0]
delta_0 = u.value[1, 0]
return D_0, delta_0
def update_prediction(self, spatial_state_prediction):
# containers for x and y coordinates of predicted states
x_pred, y_pred = [], []
# get current waypoint ID
wp_id_ = np.copy(self.model.wp_id)
for t in range(self.T):
associated_waypoint = self.model.reference_path.waypoints[wp_id_+t]
predicted_temporal_state = self.model.s2t(associated_waypoint,
spatial_state_prediction[:, t])
x_pred.append(predicted_temporal_state.x)
y_pred.append(predicted_temporal_state.y)
return x_pred, y_pred