From 12329708a760adc1195057e6987c0560608ab3be Mon Sep 17 00:00:00 2001 From: matssteinweg Date: Sun, 1 Dec 2019 16:04:18 +0100 Subject: [PATCH] Update and declutter simulation script. Add obstacles for Race path. --- simulation.py | 66 +++++++++++++++++++++++++++++++-------------------- 1 file changed, 40 insertions(+), 26 deletions(-) diff --git a/simulation.py b/simulation.py index 1142a81..df8ba01 100644 --- a/simulation.py +++ b/simulation.py @@ -1,11 +1,10 @@ from map import Map import numpy as np -from reference_path import ReferencePath +from reference_path import ReferencePath, Obstacle from spatial_bicycle_models import BicycleModel import matplotlib.pyplot as plt from MPC import MPC, MPC_OSQP from scipy import sparse -import time if __name__ == '__main__': @@ -23,20 +22,36 @@ if __name__ == '__main__': -1.5, -1.5] # Specify path resolution path_resolution = 0.05 # m / wp + # Create smoothed reference path + reference_path = ReferencePath(map, wp_x, wp_y, path_resolution, + smoothing_distance=5, max_width=0.22) elif sim_mode == 'Q': map = Map(file_path='map_floor2.png') wp_x = [-9.169, 11.9, 7.3, -6.95] wp_y = [-15.678, 10.9, 14.5, -3.31] # Specify path resolution path_resolution = 0.20 # m / wp + # Create smoothed reference path + reference_path = ReferencePath(map, wp_x, wp_y, path_resolution, + smoothing_distance=5, max_width=1.50) else: print('Invalid Simulation Mode!') - map, wp_x, wp_y, path_resolution = None, None, None, None + map, wp_x, wp_y, path_resolution, reference_path \ + = None, None, None, None, None exit(1) - # Create smoothed reference path - reference_path = ReferencePath(map, wp_x, wp_y, path_resolution, - smoothing_distance=5) + obs1 = Obstacle(cx=0.0, cy=0.0, radius=0.05) + obs2 = Obstacle(cx=-0.8, cy=-0.5, radius=0.05) + obs3 = Obstacle(cx=-0.7, cy=-1.5, radius=0.07) + obs4 = Obstacle(cx=-0.3, cy=-1.0, radius=0.07) + obs5 = Obstacle(cx=0.3, cy=-1.0, radius=0.05) + obs6 = Obstacle(cx=0.75, cy=-1.5, radius=0.07) + obs7 = Obstacle(cx=0.7, cy=-0.9, radius=0.08) + obs8 = Obstacle(cx=1.2, cy=0.0, radius=0.08) + obs9 = Obstacle(cx=0.7, cy=-0.1, radius=0.05) + obs10 = Obstacle(cx=1.1, cy=-0.6, radius=0.07) + reference_path.add_obstacles([obs1, obs2, obs3, obs4, obs5, obs6, obs7, + obs8, obs9, obs10]) ################ # Motion Model # @@ -48,19 +63,21 @@ if __name__ == '__main__': t_0 = 0.0 v = 1.0 - car = BicycleModel(reference_path=reference_path, - e_y=e_y_0, e_psi=e_psi_0, t=t_0) + car = BicycleModel(length=0.12, width=0.06, reference_path=reference_path, + e_y=e_y_0, e_psi=e_psi_0, t=t_0) ############## # Controller # ############## - N = 20 - Q = sparse.diags([0.01, 0.0, 0.4]) - R = sparse.diags([0.01]) + N = 30 + Q = sparse.diags([1.0, 0.0, 0.1]) + R = sparse.diags([0.0001]) QN = Q - InputConstraints = {'umin': np.array([-np.tan(0.44)/car.l]), 'umax': np.array([np.tan(0.44)/car.l])} - StateConstraints = {'xmin': np.array([-0.2, -np.inf, 0]), 'xmax': np.array([0.2, np.inf, np.inf])} + InputConstraints = {'umin': np.array([-np.tan(0.66)/car.l]), + 'umax': np.array([np.tan(0.66)/car.l])} + StateConstraints = {'xmin': np.array([-np.inf, -np.inf, -np.inf]), + 'xmax': np.array([np.inf, np.inf, np.inf])} mpc = MPC_OSQP(car, N, Q, R, QN, StateConstraints, InputConstraints) ############## @@ -72,13 +89,10 @@ if __name__ == '__main__': y_log = [car.temporal_state.y] # iterate over waypoints - for wp_id in range(len(car.reference_path.waypoints)-mpc.N-1): + for wp_id in range(len(car.reference_path.waypoints)-N-1): # get control signals - start = time.time() - delta = mpc.get_control(v) - end = time.time() - u = np.array([v, delta]) + u = mpc.get_control(v) # drive car car.drive(u) @@ -90,17 +104,17 @@ if __name__ == '__main__': ################### # Plot Simulation # ################### - # plot path - car.reference_path.show() - # plot car trajectory and velocity - plt.scatter(x_log[:-1], y_log[:-1], c='g', s=15) + # Plot path and drivable area + reference_path.show() - plt.scatter(mpc.current_prediction[0], mpc.current_prediction[1], c='b', s=5) + # Plot MPC prediction + mpc.show_prediction() + + # Plot car + car.show() plt.title('MPC Simulation: Position: {:.2f} m, {:.2f} m'. format(car.temporal_state.x, car.temporal_state.y)) - plt.xticks([]) - plt.yticks([]) - plt.pause(0.00000001) + plt.pause(0.05) plt.close()