Merge branch 'LTV_MPC'
commit
0c3b261615
|
@ -9,3 +9,5 @@ __pycache__/map.cpython-37.pyc
|
|||
__pycache__/MPC.cpython-37.pyc
|
||||
__pycache__/reference_path.cpython-37.pyc
|
||||
__pycache__/spatial_bicycle_models.cpython-37.pyc
|
||||
*.mp4
|
||||
*.png
|
||||
|
|
277
MPC.py
277
MPC.py
|
@ -1,127 +1,162 @@
|
|||
import numpy as np
|
||||
import cvxpy as cp
|
||||
import osqp
|
||||
from scipy import sparse
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Colors
|
||||
PREDICTION = '#BA4A00'
|
||||
|
||||
##################
|
||||
# MPC Controller #
|
||||
##################
|
||||
|
||||
|
||||
class MPC:
|
||||
def __init__(self, model, T, Q, R, Qf, StateConstraints, InputConstraints,
|
||||
Reference):
|
||||
def __init__(self, model, N, Q, R, QN, StateConstraints, InputConstraints,
|
||||
ay_max):
|
||||
"""
|
||||
Constructor for the Model Predictive Controller.
|
||||
:param model: bicycle model object to be controlled
|
||||
:param T: time horizon | int
|
||||
:param N: time horizon | int
|
||||
:param Q: state cost matrix
|
||||
:param R: input cost matrix
|
||||
:param Qf: final state cost matrix
|
||||
:param QN: final state cost matrix
|
||||
:param StateConstraints: dictionary of state constraints
|
||||
:param InputConstraints: dictionary of input constraints
|
||||
:param Reference: reference values for state variables
|
||||
:param ay_max: maximum allowed lateral acceleration in curves
|
||||
"""
|
||||
|
||||
# Parameters
|
||||
self.T = T # horizon
|
||||
self.N = N # horizon
|
||||
self.Q = Q # weight matrix state vector
|
||||
self.R = R # weight matrix input vector
|
||||
self.Qf = Qf # weight matrix terminal
|
||||
self.QN = QN # weight matrix terminal
|
||||
|
||||
# Model
|
||||
self.model = model
|
||||
|
||||
# Dimensions
|
||||
self.nx = self.model.n_states
|
||||
self.nu = 2
|
||||
|
||||
# Constraints
|
||||
self.state_constraints = StateConstraints
|
||||
self.input_constraints = InputConstraints
|
||||
|
||||
# Reference
|
||||
self.reference = Reference
|
||||
# Maximum lateral acceleration
|
||||
self.ay_max = ay_max
|
||||
|
||||
# Current control and prediction
|
||||
self.current_control = None
|
||||
self.current_prediction = None
|
||||
|
||||
# Counter for old control signals in case of infeasible problem
|
||||
self.infeasibility_counter = 0
|
||||
|
||||
# Current control signals
|
||||
self.current_control = np.zeros((self.nu*self.N))
|
||||
|
||||
# Initialize Optimization Problem
|
||||
self.problem = self._init_problem()
|
||||
self.optimizer = osqp.OSQP()
|
||||
|
||||
def _init_problem(self):
|
||||
"""
|
||||
Initialize parametrized optimization problem to be solved at each
|
||||
time step.
|
||||
Initialize optimization problem for current time step.
|
||||
"""
|
||||
|
||||
# Instantiate optimization variables
|
||||
self.x = cp.Variable((self.model.n_states+1, self.T + 1))
|
||||
self.u = cp.Variable((2, self.T))
|
||||
# Constraints
|
||||
umin = self.input_constraints['umin']
|
||||
umax = self.input_constraints['umax']
|
||||
xmin = self.state_constraints['xmin']
|
||||
xmax = self.state_constraints['xmax']
|
||||
|
||||
# Instantiate optimization parameters
|
||||
self.kappa = cp.Parameter(self.T+1)
|
||||
self.x_0 = cp.Parameter(self.model.n_states+1, 1)
|
||||
self.A = cp.Parameter(self.model.A.shape)
|
||||
self.B = cp.Parameter(self.model.B.shape)
|
||||
# LTV System Matrices
|
||||
A = np.zeros((self.nx * (self.N + 1), self.nx * (self.N + 1)))
|
||||
B = np.zeros((self.nx * (self.N + 1), self.nu * (self.N)))
|
||||
# Reference vector for state and input variables
|
||||
ur = np.zeros(self.nu*self.N)
|
||||
xr = np.zeros(self.nx*(self.N+1))
|
||||
# Offset for equality constraint (due to B * (u - ur))
|
||||
uq = np.zeros(self.N * self.nx)
|
||||
# Dynamic state constraints
|
||||
xmin_dyn = np.kron(np.ones(self.N + 1), xmin)
|
||||
xmax_dyn = np.kron(np.ones(self.N + 1), xmax)
|
||||
# Dynamic input constraints
|
||||
umax_dyn = np.kron(np.ones(self.N), umax)
|
||||
# Get curvature predictions from previous control signals
|
||||
kappa_pred = np.tan(np.array(self.current_control[3::] +
|
||||
self.current_control[-1:])) / self.model.length
|
||||
|
||||
# Initialize cost
|
||||
cost = 0
|
||||
# Iterate over horizon
|
||||
for n in range(self.N):
|
||||
|
||||
# Initialize constraints
|
||||
constraints = [self.x[:, 0] == self.x_0]
|
||||
# Get information about current waypoint
|
||||
current_waypoint = self.model.reference_path.get_waypoint(self.model.wp_id + n)
|
||||
next_waypoint = self.model.reference_path.get_waypoint(self.model.wp_id + n + 1)
|
||||
delta_s = next_waypoint - current_waypoint
|
||||
kappa_ref = current_waypoint.kappa
|
||||
v_ref = current_waypoint.v_ref
|
||||
|
||||
for t in range(self.T):
|
||||
# Compute LTV matrices
|
||||
f, A_lin, B_lin = self.model.linearize(v_ref, kappa_ref, delta_s)
|
||||
A[(n+1) * self.nx: (n+2)*self.nx, n * self.nx:(n+1)*self.nx] = A_lin
|
||||
B[(n+1) * self.nx: (n+2)*self.nx, n * self.nu:(n+1)*self.nu] = B_lin
|
||||
|
||||
# set dynamic constraints
|
||||
constraints += [self.x[:-1, t + 1] == self.A[:-1, :]
|
||||
@ self.x[:, t] + self.B[:-1, :] @ self.u[:, t],
|
||||
self.x[-1, t + 1] == self.kappa[t+1]]
|
||||
# Set reference for input signal
|
||||
ur[n*self.nu:(n+1)*self.nu] = np.array([v_ref, kappa_ref])
|
||||
# Compute equality constraint offset (B*ur)
|
||||
uq[n * self.nx:(n+1)*self.nx] = B_lin.dot(np.array
|
||||
([v_ref, kappa_ref])) - f
|
||||
|
||||
# set input constraints
|
||||
inputs = ['D', 'delta']
|
||||
for input_name, constraint in self.input_constraints.items():
|
||||
input_id = inputs.index(input_name)
|
||||
if constraint[0] is not None:
|
||||
constraints.append(-self.u[input_id, t] <= -constraint[0])
|
||||
if constraint[1] is not None:
|
||||
constraints.append(self.u[input_id, t] <= constraint[1])
|
||||
# Constrain maximum speed based on predicted car curvature
|
||||
vmax_dyn = np.sqrt(self.ay_max / (np.abs(kappa_pred[n]) + 1e-12))
|
||||
if vmax_dyn < umax_dyn[self.nu*n]:
|
||||
umax_dyn[self.nu*n] = vmax_dyn
|
||||
|
||||
# Set state constraints
|
||||
for state_name, constraint in self.state_constraints.items():
|
||||
state_id = self.model.spatial_state.list_states(). \
|
||||
index(state_name)
|
||||
if constraint[0] is not None:
|
||||
constraints.append(-self.x[state_id, t] <= -constraint[0])
|
||||
if constraint[1] is not None:
|
||||
constraints.append(self.x[state_id, t] <= constraint[1])
|
||||
# Compute dynamic constraints on e_y
|
||||
ub, lb, _ = self.model.reference_path.update_path_constraints(
|
||||
self.model.wp_id+1, self.N, 2*self.model.safety_margin,
|
||||
self.model.safety_margin)
|
||||
xmin_dyn[0] = self.model.spatial_state.e_y
|
||||
xmax_dyn[0] = self.model.spatial_state.e_y
|
||||
xmin_dyn[self.nx::self.nx] = lb
|
||||
xmax_dyn[self.nx::self.nx] = ub
|
||||
|
||||
# update cost function for states
|
||||
for state_name, state_reference in self.reference.items():
|
||||
state_id = self.model.spatial_state.list_states(). \
|
||||
index(state_name)
|
||||
cost += cp.norm(self.x[state_id, t] - state_reference, 2) * self.Q[
|
||||
state_id, state_id]
|
||||
# Set reference for state as center-line of drivable area
|
||||
xr[self.nx::self.nx] = (lb + ub) / 2
|
||||
|
||||
# update cost function for inputs
|
||||
cost += cp.norm(self.u[0, t], 2) * self.R[0, 0]
|
||||
cost += cp.norm(self.u[1, t], 2) * self.R[1, 1]
|
||||
# Get equality matrix
|
||||
Ax = sparse.kron(sparse.eye(self.N + 1),
|
||||
-sparse.eye(self.nx)) + sparse.csc_matrix(A)
|
||||
Bu = sparse.csc_matrix(B)
|
||||
Aeq = sparse.hstack([Ax, Bu])
|
||||
# Get inequality matrix
|
||||
Aineq = sparse.eye((self.N + 1) * self.nx + self.N * self.nu)
|
||||
# Combine constraint matrices
|
||||
A = sparse.vstack([Aeq, Aineq], format='csc')
|
||||
|
||||
# set state constraints
|
||||
for state_name, constraint in self.state_constraints.items():
|
||||
state_id = self.model.spatial_state.list_states(). \
|
||||
index(state_name)
|
||||
if constraint[0] is not None:
|
||||
constraints.append(-self.x[state_id, self.T] <= -constraint[0])
|
||||
if constraint[1] is not None:
|
||||
constraints.append(self.x[state_id, self.T] <= constraint[1])
|
||||
# Get upper and lower bound vectors for equality constraints
|
||||
lineq = np.hstack([xmin_dyn,
|
||||
np.kron(np.ones(self.N), umin)])
|
||||
uineq = np.hstack([xmax_dyn, umax_dyn])
|
||||
# Get upper and lower bound vectors for inequality constraints
|
||||
x0 = np.array(self.model.spatial_state[:])
|
||||
leq = np.hstack([-x0, uq])
|
||||
ueq = leq
|
||||
# Combine upper and lower bound vectors
|
||||
l = np.hstack([leq, lineq])
|
||||
u = np.hstack([ueq, uineq])
|
||||
|
||||
# update cost function for states
|
||||
for state_name, state_reference in self.reference.items():
|
||||
state_id = self.model.spatial_state.list_states(). \
|
||||
index(state_name)
|
||||
cost += cp.norm(self.x[state_id, self.T] - state_reference, 2) * \
|
||||
self.Qf[state_id, state_id]
|
||||
# Set cost matrices
|
||||
P = sparse.block_diag([sparse.kron(sparse.eye(self.N), self.Q), self.QN,
|
||||
sparse.kron(sparse.eye(self.N), self.R)], format='csc')
|
||||
q = np.hstack(
|
||||
[-np.tile(np.diag(self.Q.A), self.N) * xr[:-self.nx],
|
||||
-self.QN.dot(xr[-self.nx:]),
|
||||
-np.tile(np.diag(self.R.A), self.N) * ur])
|
||||
|
||||
# sums problem objectives and concatenates constraints.
|
||||
problem = cp.Problem(cp.Minimize(cost), constraints)
|
||||
|
||||
return problem
|
||||
# Initialize optimizer
|
||||
self.optimizer = osqp.OSQP()
|
||||
self.optimizer.setup(P=P, q=q, A=A, l=l, u=u, verbose=False)
|
||||
|
||||
def get_control(self):
|
||||
"""
|
||||
|
@ -129,32 +164,62 @@ class MPC:
|
|||
finite time optimization problem based on the linearized car model.
|
||||
"""
|
||||
|
||||
# get current waypoint curvature
|
||||
kappa_ref = [wp.kappa for wp in self.model.reference_path.waypoints
|
||||
[self.model.wp_id:self.model.wp_id+self.T+1]]
|
||||
# Number of state variables
|
||||
nx = self.model.n_states
|
||||
nu = 2
|
||||
|
||||
# Instantiate optimization parameters
|
||||
self.kappa.value = kappa_ref
|
||||
self.x_0.value = np.array(self.model.spatial_state[:] + [kappa_ref[0]])
|
||||
self.A.value = self.model.A
|
||||
self.B.value = self.model.B
|
||||
# Update current waypoint
|
||||
self.model.get_current_waypoint()
|
||||
|
||||
# Update spatial state
|
||||
self.model.spatial_state = self.model.t2s(reference_state=
|
||||
self.model.temporal_state, reference_waypoint=
|
||||
self.model.current_waypoint)
|
||||
|
||||
# Initialize optimization problem
|
||||
self._init_problem()
|
||||
|
||||
# Solve optimization problem
|
||||
self.problem.solve(solver=cp.ECOS, warm_start=True)
|
||||
dec = self.optimizer.solve()
|
||||
|
||||
# Store computed control signals and associated prediction
|
||||
try:
|
||||
self.current_control = self.u.value
|
||||
self.current_prediction = self.update_prediction(self.x.value)
|
||||
except TypeError:
|
||||
print('No solution found!')
|
||||
# Get control signals
|
||||
control_signals = np.array(dec.x[-self.N*nu:])
|
||||
control_signals[1::2] = np.arctan(control_signals[1::2] *
|
||||
self.model.length)
|
||||
v = control_signals[0]
|
||||
delta = control_signals[1]
|
||||
|
||||
# Update control signals
|
||||
self.current_control = control_signals
|
||||
|
||||
# Get predicted spatial states
|
||||
x = np.reshape(dec.x[:(self.N+1)*nx], (self.N+1, nx))
|
||||
|
||||
# Update predicted temporal states
|
||||
self.current_prediction = self.update_prediction(x)
|
||||
|
||||
# Get current control signal
|
||||
u = np.array([v, delta])
|
||||
|
||||
# if problem solved, reset infeasibility counter
|
||||
self.infeasibility_counter = 0
|
||||
|
||||
except:
|
||||
|
||||
print('Infeasible problem. Previously predicted'
|
||||
' control signal used!')
|
||||
id = nu * (self.infeasibility_counter + 1)
|
||||
u = np.array(self.current_control[id:id+2])
|
||||
|
||||
# increase infeasibility counter
|
||||
self.infeasibility_counter += 1
|
||||
|
||||
if self.infeasibility_counter == (self.N - 1):
|
||||
print('No control signal computed!')
|
||||
exit(1)
|
||||
|
||||
# RCH - get first control signal
|
||||
D_0 = self.u.value[0, 0]
|
||||
delta_0 = self.u.value[1, 0]
|
||||
|
||||
return D_0, delta_0
|
||||
return u
|
||||
|
||||
def update_prediction(self, spatial_state_prediction):
|
||||
"""
|
||||
|
@ -164,18 +229,30 @@ class MPC:
|
|||
:return: lists of predicted x and y coordinates
|
||||
"""
|
||||
|
||||
# containers for x and y coordinates of predicted states
|
||||
# Containers for x and y coordinates of predicted states
|
||||
x_pred, y_pred = [], []
|
||||
|
||||
# get current waypoint ID
|
||||
wp_id_ = np.copy(self.model.wp_id)
|
||||
|
||||
for t in range(self.T):
|
||||
associated_waypoint = self.model.reference_path.waypoints[wp_id_+t]
|
||||
# Iterate over prediction horizon
|
||||
for n in range(2, self.N):
|
||||
# Get associated waypoint
|
||||
associated_waypoint = self.model.reference_path.\
|
||||
get_waypoint(self.model.wp_id+n)
|
||||
# Transform predicted spatial state to temporal state
|
||||
predicted_temporal_state = self.model.s2t(associated_waypoint,
|
||||
spatial_state_prediction[:, t])
|
||||
spatial_state_prediction[n, :])
|
||||
|
||||
# Save predicted coordinates in world coordinate frame
|
||||
x_pred.append(predicted_temporal_state.x)
|
||||
y_pred.append(predicted_temporal_state.y)
|
||||
|
||||
return x_pred, y_pred
|
||||
|
||||
def show_prediction(self):
|
||||
"""
|
||||
Display predicted car trajectory in current axis.
|
||||
"""
|
||||
|
||||
if self.current_prediction is not None:
|
||||
plt.scatter(self.current_prediction[0], self.current_prediction[1],
|
||||
c=PREDICTION, s=30)
|
||||
|
||||
|
|
|
@ -0,0 +1,148 @@
|
|||
from map import Map
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import math
|
||||
import time
|
||||
|
||||
SCAN = '#5DADE2'
|
||||
|
||||
|
||||
class LidarModel:
|
||||
"""
|
||||
Lidar Model
|
||||
"""
|
||||
def __init__(self, FoV, range, resolution):
|
||||
"""
|
||||
Constructor for Lidar object.
|
||||
:param FoV: Sensor's Field of View in °
|
||||
:param range: range in m
|
||||
:param resolution: resolution in °
|
||||
"""
|
||||
|
||||
# set sensor parameters
|
||||
self.FoV = FoV
|
||||
self.range = range
|
||||
self.resolution = resolution
|
||||
|
||||
# number of measurements
|
||||
self.n_measurements = int(self.FoV/self.resolution + 1)
|
||||
|
||||
# construct measurement container
|
||||
angles = np.linspace(-math.pi / 360 * self.FoV,
|
||||
math.pi / 360 * self.FoV,
|
||||
self.n_measurements)
|
||||
ranges = np.ones(self.n_measurements) * self.range
|
||||
self.measurements = np.stack((angles, ranges), axis=0)
|
||||
|
||||
def scan(self, car, map):
|
||||
"""
|
||||
Get a Lidar Scan estimate
|
||||
:param car: state containing x and y coordinates of the sensor
|
||||
:param map: map object
|
||||
:return: self with updated self.measurements
|
||||
"""
|
||||
|
||||
start = time.time()
|
||||
# reset measurements
|
||||
self.measurements[1, :] = np.ones(self.n_measurements) * self.range
|
||||
|
||||
# flip map upside-down to allow for normal indexing of y axis
|
||||
#map.data = np.flipud(map.data)
|
||||
|
||||
# get sensor's map pose
|
||||
x, y = map.w2m(car.x, car.y)
|
||||
# get center of mass
|
||||
xc = x + 0.5
|
||||
yc = y + 0.5
|
||||
|
||||
# get sensor range in px values
|
||||
range_px = int(self.range / map.resolution)
|
||||
|
||||
# iterate over area within sensor's range
|
||||
for i in range(x - range_px, x + range_px + 1):
|
||||
if 0 <= i < map.width:
|
||||
for j in range(y - range_px, y + range_px + 1):
|
||||
if 0 <= j < map.height:
|
||||
# if obstacle detected
|
||||
if map.data[j, i] == 0:
|
||||
|
||||
# get center of mass of cell
|
||||
xc_target = i + 0.5
|
||||
yc_target = j + 0.5
|
||||
|
||||
# check all corner's of cell
|
||||
cell_angles = []
|
||||
for k in range(-1, 2):
|
||||
for l in range(-1, 2):
|
||||
dy = yc_target + l/2 - yc
|
||||
dx = xc_target + k/2 - xc
|
||||
cell_angle = np.arctan2(dy, dx) - car.psi
|
||||
if cell_angle < - math.pi:
|
||||
cell_angle = -np.mod(math.pi+cell_angle, 2*math.pi) + math.pi
|
||||
else:
|
||||
cell_angle = np.mod(math.pi+cell_angle, 2*math.pi) - math.pi
|
||||
cell_angles.append(cell_angle)
|
||||
|
||||
# get min and max angle hitting respective cell
|
||||
min_angle = np.min(cell_angles)
|
||||
max_angle = np.max(cell_angles)
|
||||
|
||||
# get distance to mass center of cell
|
||||
cell_distance = np.sqrt(
|
||||
(xc - xc_target)**2 + (yc - yc_target)**2)
|
||||
|
||||
# get IDs of all laser beams hitting cell
|
||||
valid_beam_ids = []
|
||||
if min_angle < -math.pi/2 and max_angle > math.pi/2:
|
||||
for beam_id in range(self.n_measurements):
|
||||
if max_angle <= self.measurements[0, beam_id] <= min_angle:
|
||||
valid_beam_ids.append(beam_id)
|
||||
else:
|
||||
for beam_id in range(self.n_measurements):
|
||||
if min_angle <= self.measurements[0, beam_id] <= max_angle:
|
||||
valid_beam_ids.append(beam_id)
|
||||
|
||||
# update distance for all valid laser beams
|
||||
for beam_id in valid_beam_ids:
|
||||
if cell_distance < self.measurements[1, beam_id] / map.resolution:
|
||||
self.measurements[1, beam_id] = cell_distance * map.resolution
|
||||
|
||||
#map.data = np.flipud(map.data)
|
||||
end = time.time()
|
||||
print('Time elapsed: ', end - start)
|
||||
|
||||
def plot_scan(self, car):
|
||||
"""
|
||||
Display current sensor measurements.
|
||||
:param car: state containing x and y coordinate of sensor
|
||||
"""
|
||||
|
||||
start = time.time()
|
||||
# get beam endpoints
|
||||
beam_end_x = self.measurements[1, :] * np.cos(self.measurements[0, :] + car.psi)
|
||||
beam_end_y = self.measurements[1, :] * np.sin(self.measurements[0, :] + car.psi)
|
||||
|
||||
# plot all laser beams
|
||||
for i in range(self.n_measurements):
|
||||
plt.plot((car.x, car.x+beam_end_x[i]), (car.y, car.y+beam_end_y[i]), c=SCAN)
|
||||
end = time.time()
|
||||
print('Time elapsed: ', end - start)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# Create Map
|
||||
map = Map('real_map.png')
|
||||
plt.imshow(map.data, cmap='gray',
|
||||
extent=[map.origin[0], map.origin[0] +
|
||||
map.width * map.resolution,
|
||||
map.origin[1], map.origin[1] +
|
||||
map.height * map.resolution])
|
||||
|
||||
car = BicycleModel(x=-4.9, y=-5.0, yaw=0.9)
|
||||
sensor = LidarModel(FoV=180, range=5, resolution=1)
|
||||
sensor.scan(car, map)
|
||||
sensor.plot_scan(car)
|
||||
|
||||
plt.axis('equal')
|
||||
plt.show()
|
154
map.py
154
map.py
|
@ -1,36 +1,79 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
import sys
|
||||
import os
|
||||
import math
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from skimage.morphology import remove_small_holes
|
||||
from PIL import Image
|
||||
dirname = os.path.dirname(__file__)
|
||||
svea = os.path.join(dirname, '../../')
|
||||
sys.path.append(os.path.abspath(svea))
|
||||
from skimage.draw import line_aa
|
||||
import matplotlib.patches as plt_patches
|
||||
|
||||
# Colors
|
||||
OBSTACLE = '#2E4053'
|
||||
|
||||
|
||||
############
|
||||
# Obstacle #
|
||||
############
|
||||
|
||||
class Obstacle:
|
||||
def __init__(self, cx, cy, radius):
|
||||
"""
|
||||
Constructor for a circular obstacle to be placed on a map.
|
||||
:param cx: x coordinate of center of obstacle in world coordinates
|
||||
:param cy: y coordinate of center of obstacle in world coordinates
|
||||
:param radius: radius of circular obstacle in m
|
||||
"""
|
||||
self.cx = cx
|
||||
self.cy = cy
|
||||
self.radius = radius
|
||||
|
||||
def show(self):
|
||||
"""
|
||||
Display obstacle on current axis.
|
||||
"""
|
||||
|
||||
# Draw circle
|
||||
circle = plt_patches.Circle(xy=(self.cx, self.cy), radius=
|
||||
self.radius, color=OBSTACLE, zorder=20)
|
||||
ax = plt.gca()
|
||||
ax.add_patch(circle)
|
||||
|
||||
|
||||
#######
|
||||
# Map #
|
||||
#######
|
||||
|
||||
class Map:
|
||||
"""
|
||||
Handle for map message. Contains a subscriber to the map topic and
|
||||
processes the map. Numpy array version of the
|
||||
map available as member variable.
|
||||
"""
|
||||
def __init__(self, file_path, value_unknown=50, threshold_occupied=90, origin=[-30.0, -24.0], resolution=0.059999):
|
||||
def __init__(self, file_path, origin, resolution, threshold_occupied=100):
|
||||
"""
|
||||
Constructor for map object. Map contains occupancy grid map data of
|
||||
environment as well as meta information.
|
||||
:param file_path: path to image of map
|
||||
:param threshold_occupied: threshold value for binarization of map
|
||||
image
|
||||
:param origin: x and y coordinates of map origin in world coordinates
|
||||
[m]
|
||||
:param resolution: resolution in m/px
|
||||
"""
|
||||
|
||||
self.value_unknown = value_unknown
|
||||
# Set binarization threshold
|
||||
self.threshold_occupied = threshold_occupied
|
||||
# instantiate member variables
|
||||
self.data = np.array(Image.open(file_path))[:, :, 0] # numpy array containing map data
|
||||
#self.process_map()
|
||||
|
||||
# Numpy array containing map data
|
||||
self.data = np.array(Image.open(file_path))[:, :, 0]
|
||||
|
||||
# Process raw map image
|
||||
self.process_map()
|
||||
|
||||
# Store meta information
|
||||
self.height = self.data.shape[0] # height of the map in px
|
||||
self.width = self.data.shape[1] # width of the map in px
|
||||
self.resolution = resolution # resolution of the map in m/px
|
||||
self.origin = origin # x and y coordinates of map origin
|
||||
# (bottom-left corner) in m
|
||||
|
||||
# Containers for user-specified additional obstacles and boundaries
|
||||
self.obstacles = list()
|
||||
self.boundaries = list()
|
||||
|
||||
def w2m(self, x, y):
|
||||
"""
|
||||
World2Map. Transform coordinates from global coordinate system to
|
||||
|
@ -39,30 +82,81 @@ class Map:
|
|||
:param y: y coordinate in global coordinate system
|
||||
:return: discrete x and y coordinates in px
|
||||
"""
|
||||
d_x = np.floor((x - self.origin[0]) / self.resolution)
|
||||
d_y = np.floor((y - self.origin[1]) / self.resolution)
|
||||
dx = int(np.floor((x - self.origin[0]) / self.resolution))
|
||||
dy = int(np.floor((y - self.origin[1]) / self.resolution))
|
||||
|
||||
return int(d_x), int(d_y)
|
||||
return dx, dy
|
||||
|
||||
def m2w(self, dx, dy):
|
||||
"""
|
||||
World2Map. Transform coordinates from global coordinate system to
|
||||
map coordinates.
|
||||
:param x: x coordinate in global coordinate system
|
||||
:param y: y coordinate in global coordinate system
|
||||
:return: discrete x and y coordinates in px
|
||||
Map2World. Transform coordinates from map coordinate system to
|
||||
global coordinates.
|
||||
:param dx: x coordinate in map coordinate system
|
||||
:param dy: y coordinate in map coordinate system
|
||||
:return: x and y coordinates of cell center in global coordinate system
|
||||
"""
|
||||
x = dx * self.resolution + self.origin[0]
|
||||
y = dy * self.resolution + self.origin[1]
|
||||
x = (dx + 0.5) * self.resolution + self.origin[0]
|
||||
y = (dy + 0.5) * self.resolution + self.origin[1]
|
||||
|
||||
return x, y
|
||||
|
||||
def process_map(self):
|
||||
"""
|
||||
Process raw map image. Binarization and removal of small holes in map.
|
||||
"""
|
||||
|
||||
# Binarization using specified threshold
|
||||
# 1 corresponds to free, 0 to occupied
|
||||
self.data = np.where(self.data >= self.threshold_occupied, 1, 0)
|
||||
|
||||
# Remove small holes in map corresponding to spurious measurements
|
||||
self.data = remove_small_holes(self.data, area_threshold=5,
|
||||
connectivity=8).astype(np.int8)
|
||||
|
||||
def add_obstacles(self, obstacles):
|
||||
"""
|
||||
Add obstacles to the map.
|
||||
:param obstacles: list of obstacle objects
|
||||
"""
|
||||
|
||||
# Extend list of obstacles
|
||||
self.obstacles.extend(obstacles)
|
||||
|
||||
# Iterate over list of new obstacles
|
||||
for obstacle in obstacles:
|
||||
|
||||
# Compute radius of circular object in pixels
|
||||
radius_px = int(np.ceil(obstacle.radius / self.resolution))
|
||||
# Get center coordinates of obstacle in map coordinates
|
||||
cx_px, cy_px = self.w2m(obstacle.cx, obstacle.cy)
|
||||
|
||||
# Add circular object to map
|
||||
y, x = np.ogrid[-radius_px: radius_px, -radius_px: radius_px]
|
||||
index = x ** 2 + y ** 2 <= radius_px ** 2
|
||||
self.data[cy_px-radius_px:cy_px+radius_px, cx_px-radius_px:
|
||||
cx_px+radius_px][index] = 0
|
||||
|
||||
def add_boundary(self, boundaries):
|
||||
"""
|
||||
Add boundaries to the map.
|
||||
:param boundaries: list of tuples containing coordinates of boundaries'
|
||||
start and end points
|
||||
"""
|
||||
|
||||
# Extend list of boundaries
|
||||
self.boundaries.extend(boundaries)
|
||||
|
||||
# Iterate over list of boundaries
|
||||
for boundary in boundaries:
|
||||
sx = self.w2m(boundary[0][0], boundary[0][1])
|
||||
gx = self.w2m(boundary[1][0], boundary[1][1])
|
||||
path_x, path_y, _ = line_aa(sx[0], sx[1], gx[0], gx[1])
|
||||
for x, y in zip(path_x, path_y):
|
||||
self.data[y, x] = 0
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
map = Map('map_floor2.png')
|
||||
plt.imshow(map.data, cmap='gray')
|
||||
map = Map('real_map.png')
|
||||
# map = Map('sim_map.png')
|
||||
plt.imshow(np.flipud(map.data), cmap='gray')
|
||||
plt.show()
|
||||
|
|
BIN
map_floor2.png
BIN
map_floor2.png
Binary file not shown.
Before Width: | Height: | Size: 24 KiB |
BIN
map_race.png
BIN
map_race.png
Binary file not shown.
Before Width: | Height: | Size: 19 KiB |
|
@ -1,8 +1,16 @@
|
|||
import numpy as np
|
||||
import math
|
||||
from map import Map
|
||||
from bresenham import bresenham
|
||||
from map import Map, Obstacle
|
||||
from skimage.draw import line_aa
|
||||
import matplotlib.pyplot as plt
|
||||
from scipy import sparse
|
||||
import osqp
|
||||
|
||||
# Colors
|
||||
DRIVABLE_AREA = '#BDC3C7'
|
||||
WAYPOINTS = '#D0D3D4'
|
||||
PATH_CONSTRAINTS = '#F5B041'
|
||||
OBSTACLE = '#2E4053'
|
||||
|
||||
|
||||
############
|
||||
|
@ -13,7 +21,9 @@ class Waypoint:
|
|||
def __init__(self, x, y, psi, kappa):
|
||||
"""
|
||||
Waypoint object containing x, y location in global coordinate system,
|
||||
orientation of waypoint psi and local curvature kappa
|
||||
orientation of waypoint psi and local curvature kappa. Waypoint further
|
||||
contains an associated reference velocity computed by the speed profile
|
||||
and a path width specified by upper and lower bounds.
|
||||
:param x: x position in global coordinate system | [m]
|
||||
:param y: y position in global coordinate system | [m]
|
||||
:param psi: orientation of waypoint | [rad]
|
||||
|
@ -24,7 +34,26 @@ class Waypoint:
|
|||
self.psi = psi
|
||||
self.kappa = kappa
|
||||
|
||||
# Reference velocity at this waypoint according to speed profile
|
||||
self.v_ref = None
|
||||
|
||||
# Information about drivable area at waypoint
|
||||
# upper and lower bound of drivable area orthogonal to
|
||||
# waypoint orientation.
|
||||
# Upper bound: free drivable area to the left of center-line in m
|
||||
# Lower bound: free drivable area to the right of center-line in m
|
||||
self.lb = None
|
||||
self.ub = None
|
||||
self.static_border_cells = None
|
||||
self.dynamic_border_cells = None
|
||||
|
||||
def __sub__(self, other):
|
||||
"""
|
||||
Overload subtract operator. Difference of two waypoints is equal to
|
||||
their euclidean distance.
|
||||
:param other: subtrahend
|
||||
:return: euclidean distance between two waypoints
|
||||
"""
|
||||
return ((self.x - other.x)**2 + (self.y - other.y)**2)**0.5
|
||||
|
||||
|
||||
|
@ -34,35 +63,57 @@ class Waypoint:
|
|||
|
||||
|
||||
class ReferencePath:
|
||||
def __init__(self, map, wp_x, wp_y, resolution, smoothing_distance, width_info=False):
|
||||
def __init__(self, map, wp_x, wp_y, resolution, smoothing_distance,
|
||||
max_width, circular):
|
||||
"""
|
||||
Reference Path object. Create a reference trajectory from specified
|
||||
corner points with given resolution. Smoothing around corners can be
|
||||
applied.
|
||||
applied. Waypoints represent center-line of the path with specified
|
||||
maximum width to both sides.
|
||||
:param map: map object on which path will be placed
|
||||
:param wp_x: x coordinates of corner points in global coordinates
|
||||
:param wp_y: y coordinates of corner points in global coordinates
|
||||
:param resolution: resolution of the path in m/wp
|
||||
:param smoothing_distance: number of waypoints used for smoothing the
|
||||
path by averaging neighborhood of waypoints
|
||||
:param max_width: maximum width of path to both sides in m
|
||||
:param circular: True if path circular
|
||||
"""
|
||||
# precision
|
||||
|
||||
# Precision
|
||||
self.eps = 1e-12
|
||||
|
||||
# map
|
||||
# Map
|
||||
self.map = map
|
||||
|
||||
# resolution of the path
|
||||
# Resolution of the path
|
||||
self.resolution = resolution
|
||||
|
||||
# look ahead distance for path averaging
|
||||
# Look ahead distance for path averaging
|
||||
self.smoothing_distance = smoothing_distance
|
||||
|
||||
# waypoints with x, y, psi, k
|
||||
self.waypoints = self.construct_path(wp_x, wp_y)
|
||||
# Circular flag
|
||||
self.circular = circular
|
||||
|
||||
# path width
|
||||
self.get_width_info = width_info
|
||||
if self.get_width_info:
|
||||
self.width_info = self.compute_width()
|
||||
self.min_width = (np.min(self.width_info[0, :]),
|
||||
np.min(self.width_info[3, :]))
|
||||
# List of waypoint objects
|
||||
self.waypoints = self._construct_path(wp_x, wp_y)
|
||||
|
||||
def construct_path(self, wp_x, wp_y):
|
||||
# Number of waypoints
|
||||
self.n_waypoints = len(self.waypoints)
|
||||
|
||||
# Length of path
|
||||
self.length, self.segment_lengths = self._compute_length()
|
||||
|
||||
# Compute path width (attribute of each waypoint)
|
||||
self._compute_width(max_width=max_width)
|
||||
|
||||
def _construct_path(self, wp_x, wp_y):
|
||||
"""
|
||||
Construct path from given waypoints.
|
||||
:param wp_x: x coordinates of waypoints in global coordinates
|
||||
:param wp_y: y coordinates of waypoints in global coordinates
|
||||
:return: list of waypoint objects
|
||||
"""
|
||||
|
||||
# Number of waypoints
|
||||
n_wp = [int(np.sqrt((wp_x[i + 1] - wp_x[i]) ** 2 +
|
||||
|
@ -78,7 +129,7 @@ class ReferencePath:
|
|||
tolist() for i in range(len(wp_y) - 1)]
|
||||
wp_y = [wp for segment in wp_y for wp in segment] + [gp_y]
|
||||
|
||||
# smooth path
|
||||
# Smooth path
|
||||
wp_xs = []
|
||||
wp_ys = []
|
||||
for wp_id in range(self.smoothing_distance, len(wp_x) -
|
||||
|
@ -88,147 +139,602 @@ class ReferencePath:
|
|||
wp_ys.append(np.mean(wp_y[wp_id - self.smoothing_distance:wp_id
|
||||
+ self.smoothing_distance + 1]))
|
||||
|
||||
# Construct list of waypoint objects
|
||||
waypoints = list(zip(wp_xs, wp_ys))
|
||||
waypoints = self.spatial_reformulation(waypoints)
|
||||
waypoints = self._construct_waypoints(waypoints)
|
||||
|
||||
return waypoints
|
||||
|
||||
def spatial_reformulation(self, waypoints):
|
||||
def _construct_waypoints(self, waypoint_coordinates):
|
||||
"""
|
||||
Reformulate conventional waypoints (x, y) coordinates into waypoint
|
||||
objects containing (x, y, psi, kappa)
|
||||
objects containing (x, y, psi, kappa, ub, lb)
|
||||
:param waypoint_coordinates: list of (x, y) coordinates of waypoints in
|
||||
global coordinates
|
||||
:return: list of waypoint objects for entire reference path
|
||||
"""
|
||||
|
||||
waypoints_spatial = []
|
||||
for wp_id in range(len(waypoints) - 1):
|
||||
# List containing waypoint objects
|
||||
waypoints = []
|
||||
|
||||
# get start and goal waypoints
|
||||
current_wp = np.array(waypoints[wp_id])
|
||||
next_wp = np.array(waypoints[wp_id + 1])
|
||||
# Iterate over all waypoints
|
||||
for wp_id in range(len(waypoint_coordinates) - 1):
|
||||
|
||||
# difference vector
|
||||
# Get start and goal waypoints
|
||||
current_wp = np.array(waypoint_coordinates[wp_id])
|
||||
next_wp = np.array(waypoint_coordinates[wp_id + 1])
|
||||
|
||||
# Difference vector
|
||||
dif_ahead = next_wp - current_wp
|
||||
|
||||
# angle ahead
|
||||
# Angle ahead
|
||||
psi = np.arctan2(dif_ahead[1], dif_ahead[0])
|
||||
|
||||
# distance to next waypoint
|
||||
# Distance to next waypoint
|
||||
dist_ahead = np.linalg.norm(dif_ahead, 2)
|
||||
|
||||
# get x and y coordinates of current waypoint
|
||||
x = current_wp[0]
|
||||
y = current_wp[1]
|
||||
# Get x and y coordinates of current waypoint
|
||||
x, y = current_wp[0], current_wp[1]
|
||||
|
||||
# Compute local curvature at waypoint
|
||||
# first waypoint
|
||||
if wp_id == 0:
|
||||
kappa = 0
|
||||
else:
|
||||
prev_wp = np.array(waypoints[wp_id - 1])
|
||||
prev_wp = np.array(waypoint_coordinates[wp_id - 1])
|
||||
dif_behind = current_wp - prev_wp
|
||||
angle_behind = np.arctan2(dif_behind[1], dif_behind[0])
|
||||
angle_dif = np.mod(psi - angle_behind + math.pi, 2 * math.pi) \
|
||||
- math.pi
|
||||
kappa = np.abs(angle_dif / (dist_ahead + self.eps))
|
||||
kappa = angle_dif / (dist_ahead + self.eps)
|
||||
|
||||
waypoints_spatial.append(Waypoint(x, y, psi, kappa))
|
||||
waypoints.append(Waypoint(x, y, psi, kappa))
|
||||
|
||||
return waypoints_spatial
|
||||
return waypoints
|
||||
|
||||
def compute_width(self, max_dist=2.0):
|
||||
max_dist = max_dist # m
|
||||
width_info = np.zeros((6, len(self.waypoints)))
|
||||
def _compute_length(self):
|
||||
"""
|
||||
Compute length of center-line path as sum of euclidean distance between
|
||||
waypoints.
|
||||
:return: length of center-line path in m
|
||||
"""
|
||||
segment_lengths = [0.0] + [self.waypoints[wp_id+1] - self.waypoints
|
||||
[wp_id] for wp_id in range(len(self.waypoints)-1)]
|
||||
s = sum(segment_lengths)
|
||||
return s, segment_lengths
|
||||
|
||||
def _compute_width(self, max_width):
|
||||
"""
|
||||
Compute the width of the path by checking the maximum free space to
|
||||
the left and right of the center-line.
|
||||
:param max_width: maximum width of the path.
|
||||
"""
|
||||
|
||||
# Iterate over all waypoints
|
||||
for wp_id, wp in enumerate(self.waypoints):
|
||||
# List containing information for current waypoint
|
||||
width_info = []
|
||||
# Check width left and right of the center-line
|
||||
for i, dir in enumerate(['left', 'right']):
|
||||
# get pixel coordinates of waypoint
|
||||
wp_x, wp_y = self.map.w2m(wp.x, wp.y)
|
||||
# get angle orthogonal to path in current direction
|
||||
# Get angle orthogonal to path in current direction
|
||||
if dir == 'left':
|
||||
angle = np.mod(wp.psi + math.pi / 2 + math.pi,
|
||||
2 * math.pi) - math.pi
|
||||
else:
|
||||
angle = np.mod(wp.psi - math.pi / 2 + math.pi,
|
||||
2 * math.pi) - math.pi
|
||||
# get closest cell to orthogonal vector
|
||||
t_x, t_y = self.map.w2m(wp.x + max_dist * np.cos(angle), wp.y + max_dist * np.sin(angle))
|
||||
# compute path between cells
|
||||
width_info[3*i:3*(i+1), wp_id] = self.get_min_dist(wp_x, wp_y, t_x, t_y, max_dist)
|
||||
return width_info
|
||||
# Get closest cell to orthogonal vector
|
||||
t_x, t_y = self.map.w2m(wp.x + max_width * np.cos(angle), wp.y
|
||||
+ max_width * np.sin(angle))
|
||||
# Compute distance to orthogonal cell on path border
|
||||
b_value, b_cell = self._get_min_width(wp, t_x, t_y, max_width)
|
||||
# Add information to list for current waypoint
|
||||
width_info.append(b_value)
|
||||
width_info.append(b_cell)
|
||||
|
||||
def get_min_dist(self, wp_x, wp_y, t_x, t_y, max_dist):
|
||||
# get neighboring cells (account for discretization)
|
||||
neighbors_x, neighbors_y = [], []
|
||||
# Set waypoint attributes with width to the left and right
|
||||
wp.ub = width_info[0]
|
||||
wp.lb = -1 * width_info[2] # minus can be assumed as waypoints
|
||||
# represent center-line of the path
|
||||
# Set border cells of waypoint
|
||||
wp.static_border_cells = (width_info[1], width_info[3])
|
||||
wp.dynamic_border_cells = (width_info[1], width_info[3])
|
||||
|
||||
def _get_min_width(self, wp, t_x, t_y, max_width):
|
||||
"""
|
||||
Compute the minimum distance between the current waypoint and the
|
||||
orthogonal cell on the border of the path
|
||||
:param wp: current waypoint
|
||||
:param t_x: x coordinate of border cell in map coordinates
|
||||
:param t_y: y coordinate of border cell in map coordinates
|
||||
:param max_width: maximum path width in m
|
||||
:return: min_width to border and corresponding cell
|
||||
"""
|
||||
|
||||
# Get neighboring cells of orthogonal cell (account for
|
||||
# discretization inaccuracy)
|
||||
tn_x, tn_y = [], []
|
||||
for i in range(-1, 2, 1):
|
||||
for j in range(-1, 2, 1):
|
||||
neighbors_x.append(t_x + i)
|
||||
neighbors_y.append(t_y + j)
|
||||
tn_x.append(t_x+i)
|
||||
tn_y.append(t_y+j)
|
||||
|
||||
# get bresenham paths to all neighboring cells
|
||||
# Get pixel coordinates of waypoint
|
||||
wp_x, wp_y = self.map.w2m(wp.x, wp.y)
|
||||
|
||||
# Get Bresenham paths to all possible cells
|
||||
paths = []
|
||||
for t_x, t_y in zip(neighbors_x, neighbors_y):
|
||||
path = list(bresenham(wp_x, wp_y, t_x, t_y))
|
||||
paths.append(path)
|
||||
for t_x, t_y in zip(tn_x, tn_y):
|
||||
x_list, y_list, _ = line_aa(wp_x, wp_y, t_x, t_y)
|
||||
paths.append(zip(x_list, y_list))
|
||||
|
||||
min_dist = max_dist
|
||||
# Compute minimum distance to border cell
|
||||
min_width = max_width
|
||||
# map inspected cell to world coordinates
|
||||
min_cell = self.map.m2w(t_x, t_y)
|
||||
for path in paths:
|
||||
for cell in path:
|
||||
t_x = cell[0]
|
||||
t_y = cell[1]
|
||||
# if path goes through occupied cell
|
||||
t_x, t_y = cell[0], cell[1]
|
||||
# If path goes through occupied cell
|
||||
if self.map.data[t_y, t_x] == 0:
|
||||
# get world coordinates
|
||||
x, y = self.map.m2w(wp_x, wp_y)
|
||||
# Get world coordinates
|
||||
c_x, c_y = self.map.m2w(t_x, t_y)
|
||||
cell_dist = np.sqrt((x - c_x) ** 2 + (y - c_y) ** 2)
|
||||
if cell_dist < min_dist:
|
||||
min_dist = cell_dist
|
||||
cell_dist = np.sqrt((wp.x - c_x) ** 2 + (wp.y - c_y) ** 2)
|
||||
if cell_dist < min_width:
|
||||
min_width = cell_dist
|
||||
min_cell = (c_x, c_y)
|
||||
dist_info = np.array([min_dist, min_cell[0], min_cell[1]])
|
||||
return dist_info
|
||||
|
||||
def show(self):
|
||||
return min_width, min_cell
|
||||
|
||||
# plot map
|
||||
def compute_speed_profile(self, Constraints):
|
||||
"""
|
||||
Compute a speed profile for the path. Assign a reference velocity
|
||||
to each waypoint based on its curvature.
|
||||
:param Constraints: constraints on acceleration and velocity
|
||||
curvature of the path
|
||||
"""
|
||||
|
||||
# Set optimization horizon
|
||||
N = self.n_waypoints - 1
|
||||
|
||||
# Constraints
|
||||
a_min = np.ones(N-1) * Constraints['a_min']
|
||||
a_max = np.ones(N-1) * Constraints['a_max']
|
||||
v_min = np.ones(N) * Constraints['v_min']
|
||||
v_max = np.ones(N) * Constraints['v_max']
|
||||
|
||||
# Maximum lateral acceleration
|
||||
ay_max = Constraints['ay_max']
|
||||
|
||||
# Inequality Matrix
|
||||
D1 = np.zeros((N-1, N))
|
||||
|
||||
# Iterate over horizon
|
||||
for i in range(N):
|
||||
|
||||
# Get information about current waypoint
|
||||
current_waypoint = self.get_waypoint(i)
|
||||
next_waypoint = self.get_waypoint(i+1)
|
||||
# distance between waypoints
|
||||
li = next_waypoint - current_waypoint
|
||||
# curvature of waypoint
|
||||
ki = current_waypoint.kappa
|
||||
|
||||
# Fill operator matrix
|
||||
# dynamics of acceleration
|
||||
if i < N-1:
|
||||
D1[i, i:i+2] = np.array([-1/(2*li), 1/(2*li)])
|
||||
|
||||
# Compute dynamic constraint on velocity
|
||||
v_max_dyn = np.sqrt(ay_max / (np.abs(ki) + self.eps))
|
||||
if v_max_dyn < v_max[i]:
|
||||
v_max[i] = v_max_dyn
|
||||
|
||||
# Construct inequality matrix
|
||||
D1 = sparse.csc_matrix(D1)
|
||||
D2 = sparse.eye(N)
|
||||
D = sparse.vstack([D1, D2], format='csc')
|
||||
|
||||
# Get upper and lower bound vectors for inequality constraints
|
||||
l = np.hstack([a_min, v_min])
|
||||
u = np.hstack([a_max, v_max])
|
||||
|
||||
# Set cost matrices
|
||||
P = sparse.eye(N, format='csc')
|
||||
q = -1 * v_max
|
||||
|
||||
# Solve optimization problem
|
||||
problem = osqp.OSQP()
|
||||
problem.setup(P=P, q=q, A=D, l=l, u=u, verbose=False)
|
||||
speed_profile = problem.solve().x
|
||||
|
||||
# Assign reference velocity to every waypoint
|
||||
for i, wp in enumerate(self.waypoints[:-1]):
|
||||
wp.v_ref = speed_profile[i]
|
||||
self.waypoints[-1].v_ref = self.waypoints[-2].v_ref
|
||||
|
||||
def get_waypoint(self, wp_id):
|
||||
"""
|
||||
Get waypoint corresponding to wp_id. Circular indexing supported.
|
||||
:param wp_id: unique waypoint ID
|
||||
:return: waypoint object
|
||||
"""
|
||||
|
||||
# Allow circular indexing if circular path
|
||||
if wp_id >= self.n_waypoints and self.circular:
|
||||
wp_id = np.mod(wp_id, self.n_waypoints)
|
||||
# Terminate execution if end of path reached
|
||||
elif wp_id >= self.n_waypoints and not self.circular:
|
||||
print('Reached end of path!')
|
||||
exit(1)
|
||||
|
||||
return self.waypoints[wp_id]
|
||||
|
||||
def show(self, display_drivable_area=True):
|
||||
"""
|
||||
Display path object on current figure.
|
||||
:param display_drivable_area: If True, display arrows indicating width
|
||||
of drivable area
|
||||
"""
|
||||
|
||||
# Clear figure
|
||||
plt.clf()
|
||||
plt.imshow(np.flipud(self.map.data),cmap='gray',
|
||||
|
||||
# Disabled ticks
|
||||
plt.xticks([])
|
||||
plt.yticks([])
|
||||
|
||||
# Plot map in gray-scale and set extent to match world coordinates
|
||||
canvas = np.ones(self.map.data.shape)
|
||||
# canvas = np.flipud(self.map.data)
|
||||
plt.imshow(canvas, cmap='gray',
|
||||
extent=[self.map.origin[0], self.map.origin[0] +
|
||||
self.map.width * self.map.resolution,
|
||||
self.map.origin[1], self.map.origin[1] +
|
||||
self.map.height * self.map.resolution])
|
||||
# plot reference path
|
||||
self.map.height * self.map.resolution], vmin=0.0,
|
||||
vmax=1.0)
|
||||
|
||||
# Get x and y coordinates for all waypoints
|
||||
wp_x = np.array([wp.x for wp in self.waypoints])
|
||||
wp_y = np.array([wp.y for wp in self.waypoints])
|
||||
plt.scatter(wp_x, wp_y, color='k', s=5)
|
||||
|
||||
if self.get_width_info:
|
||||
print('Min Width Left: {:f} m'.format(self.min_width[0]))
|
||||
print('Min Width Right: {:f} m'.format(self.min_width[1]))
|
||||
plt.quiver(wp_x, wp_y, self.width_info[1, :] - wp_x,
|
||||
self.width_info[2, :] - wp_y, scale=1, units='xy',
|
||||
width=0.05, color='#D4AC0D')
|
||||
plt.quiver(wp_x, wp_y, self.width_info[4, :] - wp_x,
|
||||
self.width_info[5, :] - wp_y, scale=1, units='xy',
|
||||
width=0.05, color='#BA4A00')
|
||||
# Get x and y locations of border cells for upper and lower bound
|
||||
wp_ub_x = np.array([wp.static_border_cells[0][0] for wp in self.waypoints])
|
||||
wp_ub_y = np.array([wp.static_border_cells[0][1] for wp in self.waypoints])
|
||||
wp_lb_x = np.array([wp.static_border_cells[1][0] for wp in self.waypoints])
|
||||
wp_lb_y = np.array([wp.static_border_cells[1][1] for wp in self.waypoints])
|
||||
|
||||
# Plot waypoints
|
||||
# colors = [wp.v_ref for wp in self.waypoints]
|
||||
plt.scatter(wp_x, wp_y, c=WAYPOINTS, s=10)
|
||||
|
||||
# Plot arrows indicating drivable area
|
||||
if display_drivable_area:
|
||||
plt.quiver(wp_x, wp_y, wp_ub_x - wp_x, wp_ub_y - wp_y, scale=1,
|
||||
units='xy', width=0.2*self.resolution, color=DRIVABLE_AREA,
|
||||
headwidth=1, headlength=0)
|
||||
plt.quiver(wp_x, wp_y, wp_lb_x - wp_x, wp_lb_y - wp_y, scale=1,
|
||||
units='xy', width=0.2*self.resolution, color=DRIVABLE_AREA,
|
||||
headwidth=1, headlength=0)
|
||||
|
||||
# Plot border of path
|
||||
bl_x = np.array([wp.static_border_cells[0][0] for wp in
|
||||
self.waypoints] +
|
||||
[self.waypoints[0].static_border_cells[0][0]])
|
||||
bl_y = np.array([wp.static_border_cells[0][1] for wp in
|
||||
self.waypoints] +
|
||||
[self.waypoints[0].static_border_cells[0][1]])
|
||||
br_x = np.array([wp.static_border_cells[1][0] for wp in
|
||||
self.waypoints] +
|
||||
[self.waypoints[0].static_border_cells[1][0]])
|
||||
br_y = np.array([wp.static_border_cells[1][1] for wp in
|
||||
self.waypoints] +
|
||||
[self.waypoints[0].static_border_cells[1][1]])
|
||||
|
||||
# If circular path, connect start and end point
|
||||
if self.circular:
|
||||
plt.plot(bl_x, bl_y, color='#5E5E5E')
|
||||
plt.plot(br_x, br_y, color='#5E5E5E')
|
||||
# If not circular, close path at start and end
|
||||
else:
|
||||
plt.plot(bl_x[:-1], bl_y[:-1], color=OBSTACLE)
|
||||
plt.plot(br_x[:-1], br_y[:-1], color=OBSTACLE)
|
||||
plt.plot((bl_x[-2], br_x[-2]), (bl_y[-2], br_y[-2]), color=OBSTACLE)
|
||||
plt.plot((bl_x[0], br_x[0]), (bl_y[0], br_y[0]), color=OBSTACLE)
|
||||
|
||||
# Plot dynamic path constraints
|
||||
# Get x and y locations of border cells for upper and lower bound
|
||||
wp_ub_x = np.array(
|
||||
[wp.dynamic_border_cells[0][0] for wp in self.waypoints]+
|
||||
[self.waypoints[0].static_border_cells[0][0]])
|
||||
wp_ub_y = np.array(
|
||||
[wp.dynamic_border_cells[0][1] for wp in self.waypoints]+
|
||||
[self.waypoints[0].static_border_cells[0][1]])
|
||||
wp_lb_x = np.array(
|
||||
[wp.dynamic_border_cells[1][0] for wp in self.waypoints]+
|
||||
[self.waypoints[0].static_border_cells[1][0]])
|
||||
wp_lb_y = np.array(
|
||||
[wp.dynamic_border_cells[1][1] for wp in self.waypoints]+
|
||||
[self.waypoints[0].static_border_cells[1][1]])
|
||||
plt.plot(wp_ub_x, wp_ub_y, c=PATH_CONSTRAINTS)
|
||||
plt.plot(wp_lb_x, wp_lb_y, c=PATH_CONSTRAINTS)
|
||||
|
||||
# Plot obstacles
|
||||
for obstacle in self.map.obstacles:
|
||||
obstacle.show()
|
||||
|
||||
def _compute_free_segments(self, wp, min_width):
|
||||
"""
|
||||
Compute free path segments.
|
||||
:param wp: waypoint object
|
||||
:param min_width: minimum width of valid segment
|
||||
:return: segment candidates as list of tuples (ub_cell, lb_cell)
|
||||
"""
|
||||
|
||||
# Candidate segments
|
||||
free_segments = []
|
||||
|
||||
# Get waypoint's border cells in map coordinates
|
||||
ub_p = self.map.w2m(wp.static_border_cells[0][0],
|
||||
wp.static_border_cells[0][1])
|
||||
lb_p = self.map.w2m(wp.static_border_cells[1][0],
|
||||
wp.static_border_cells[1][1])
|
||||
|
||||
# Compute path from left border cell to right border cell
|
||||
x_list, y_list, _ = line_aa(ub_p[0], ub_p[1], lb_p[0], lb_p[1])
|
||||
|
||||
# Initialize upper and lower bound of drivable area to
|
||||
# upper bound of path
|
||||
ub_o, lb_o = ub_p, ub_p
|
||||
|
||||
# Assume occupied path
|
||||
free_cells = False
|
||||
|
||||
# Iterate over path from left border to right border
|
||||
for x, y in zip(x_list[1:], y_list[1:]):
|
||||
# If cell is free, update lower bound
|
||||
if self.map.data[y, x] == 1:
|
||||
# Free cell detected
|
||||
free_cells = True
|
||||
lb_o = (x, y)
|
||||
# If cell is occupied or end of path, end segment. Add segment
|
||||
# to list of candidates. Then, reset upper and lower bound to
|
||||
# current cell.
|
||||
if (self.map.data[y, x] == 0 or (x, y) == lb_p) and free_cells:
|
||||
# Set lower bound to border cell of segment
|
||||
lb_o = (x, y)
|
||||
# Transform upper and lower bound cells to world coordinates
|
||||
ub_o = self.map.m2w(ub_o[0], ub_o[1])
|
||||
lb_o = self.map.m2w(lb_o[0], lb_o[1])
|
||||
# If segment larger than threshold, add to candidates
|
||||
if np.sqrt((ub_o[0]-lb_o[0])**2 + (ub_o[1]-lb_o[1])**2) > \
|
||||
min_width:
|
||||
free_segments.append((ub_o, lb_o))
|
||||
# Start new segment
|
||||
ub_o = (x, y)
|
||||
free_cells = False
|
||||
elif self.map.data[y, x] == 0 and not free_cells:
|
||||
ub_o = (x, y)
|
||||
lb_o = (x, y)
|
||||
|
||||
return free_segments
|
||||
|
||||
def update_path_constraints(self, wp_id, N, min_width, safety_margin):
|
||||
"""
|
||||
Compute upper and lower bounds of the drivable area orthogonal to
|
||||
the given waypoint.
|
||||
"""
|
||||
|
||||
# container for constraints and border cells
|
||||
ub_hor = []
|
||||
lb_hor = []
|
||||
border_cells_hor = []
|
||||
border_cells_hor_sm = []
|
||||
|
||||
# Iterate over horizon
|
||||
for n in range(N):
|
||||
|
||||
# get corresponding waypoint
|
||||
wp = self.get_waypoint(wp_id+n)
|
||||
|
||||
# Get list of free segments
|
||||
free_segments = self._compute_free_segments(wp, min_width)
|
||||
|
||||
# First waypoint in horizon uses largest segment
|
||||
if n == 0:
|
||||
segment_lengths = [np.sqrt((seg[0][0]-seg[1][0])**2 +
|
||||
(seg[0][1]-seg[1][1])**2) for seg in free_segments]
|
||||
ls_id = segment_lengths.index(max(segment_lengths))
|
||||
ub_ls, lb_ls = free_segments[ls_id]
|
||||
|
||||
else:
|
||||
|
||||
# Get border cells of selected segment at previous waypoint
|
||||
ub_pw, lb_pw = border_cells_hor[n-1]
|
||||
ub_pw, lb_pw = list(ub_pw), list(lb_pw)
|
||||
|
||||
# Project border cells onto new waypoint in path direction
|
||||
wp_prev = self.get_waypoint(wp_id+n-1)
|
||||
delta_s = wp_prev - wp
|
||||
ub_pw[0] += delta_s * np.cos(wp_prev.psi)
|
||||
ub_pw[1] += delta_s * np.cos(wp_prev.psi)
|
||||
lb_pw[0] += delta_s * np.sin(wp_prev.psi)
|
||||
lb_pw[1] += delta_s * np.sin(wp_prev.psi)
|
||||
|
||||
# Iterate over free segments for current waypoint
|
||||
if len(free_segments) >= 2:
|
||||
|
||||
# container for overlap of segments with projection
|
||||
segment_offsets = []
|
||||
|
||||
for free_segment in free_segments:
|
||||
|
||||
# Get border cells of segment
|
||||
ub_fs, lb_fs = free_segment
|
||||
|
||||
# distance between upper bounds and lower bounds
|
||||
d_ub = np.sqrt((ub_fs[0]-ub_pw[0])**2 + (ub_fs[1]-ub_pw[1])**2)
|
||||
d_lb = np.sqrt((lb_fs[0]-lb_pw[0])**2 + (lb_fs[1]-lb_pw[1])**2)
|
||||
mean_dist = (d_ub + d_lb) / 2
|
||||
|
||||
# Append offset to projected previous segment
|
||||
segment_offsets.append(mean_dist)
|
||||
|
||||
# Select segment with minimum offset to projected previous
|
||||
# segment
|
||||
ls_id = segment_offsets.index(min(segment_offsets))
|
||||
ub_ls, lb_ls = free_segments[ls_id]
|
||||
|
||||
# Select free segment in case of only one candidate
|
||||
elif len(free_segments) == 1:
|
||||
ub_ls, lb_ls = free_segments[0]
|
||||
|
||||
# Set waypoint coordinates as bound cells if no feasible
|
||||
# segment available
|
||||
else:
|
||||
ub_ls, lb_ls = (wp.x, wp.y), (wp.x, wp.y)
|
||||
|
||||
# Check sign of upper and lower bound
|
||||
angle_ub = np.mod(np.arctan2(ub_ls[1] - wp.y, ub_ls[0] - wp.x)
|
||||
- wp.psi + math.pi, 2 * math.pi) - math.pi
|
||||
angle_lb = np.mod(np.arctan2(lb_ls[1] - wp.y, lb_ls[0] - wp.x)
|
||||
- wp.psi + math.pi, 2 * math.pi) - math.pi
|
||||
sign_ub = np.sign(angle_ub)
|
||||
sign_lb = np.sign(angle_lb)
|
||||
|
||||
# Compute upper and lower bound of largest drivable area
|
||||
ub = sign_ub * np.sqrt(
|
||||
(ub_ls[0] - wp.x) ** 2 + (ub_ls[1] - wp.y) ** 2)
|
||||
lb = sign_lb * np.sqrt(
|
||||
(lb_ls[0] - wp.x) ** 2 + (lb_ls[1] - wp.y) ** 2)
|
||||
|
||||
# Subtract safety margin
|
||||
ub -= safety_margin
|
||||
lb += safety_margin
|
||||
|
||||
# Check feasibility of the path
|
||||
if ub < lb:
|
||||
# Upper and lower bound of 0 indicate an infeasible path
|
||||
# given the specified safety margin
|
||||
ub, lb = 0.0, 0.0
|
||||
|
||||
# Compute absolute angle of bound cell
|
||||
angle_ub = np.mod(math.pi / 2 + wp.psi + math.pi,
|
||||
2 * math.pi) - math.pi
|
||||
angle_lb = np.mod(-math.pi / 2 + wp.psi + math.pi,
|
||||
2 * math.pi) - math.pi
|
||||
# Compute cell on bound for computed distance ub and lb
|
||||
ub_ls = wp.x + ub * np.cos(angle_ub), wp.y + ub * np.sin(
|
||||
angle_ub)
|
||||
lb_ls = wp.x - lb * np.cos(angle_lb), wp.y - lb * np.sin(
|
||||
angle_lb)
|
||||
bound_cells_sm = (ub_ls, lb_ls)
|
||||
# Compute cell on bound for computed distance ub and lb
|
||||
ub_ls = wp.x + (ub + safety_margin) * np.cos(angle_ub), wp.y + (ub + safety_margin) * np.sin(
|
||||
angle_ub)
|
||||
lb_ls = wp.x - (lb - safety_margin) * np.cos(angle_lb), wp.y - (lb - safety_margin) * np.sin(
|
||||
angle_lb)
|
||||
bound_cells = (ub_ls, lb_ls)
|
||||
|
||||
# Append results
|
||||
ub_hor.append(ub)
|
||||
lb_hor.append(lb)
|
||||
border_cells_hor.append(list(bound_cells))
|
||||
border_cells_hor_sm.append(list(bound_cells_sm))
|
||||
|
||||
# Assign dynamic border cells to waypoints
|
||||
wp.dynamic_border_cells = bound_cells_sm
|
||||
|
||||
return np.array(ub_hor), np.array(lb_hor), border_cells_hor_sm
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# Create Map
|
||||
map = Map(file_path='map_race.png', origin=[-1, -2], resolution=0.005)
|
||||
# Select Track | 'Real_Track' or 'Sim_Track'
|
||||
path = 'Sim_Track'
|
||||
|
||||
# Specify waypoints
|
||||
# Floor 2
|
||||
# wp_x = [-9.169, -2.7, 11.9, 7.3, -6.95]
|
||||
# wp_y = [-15.678, -7.12, 10.9, 14.5, -3.31]
|
||||
# Race Track
|
||||
wp_x = [-0.75, -0.25, -0.25, 0.25, 0.25, 1.25, 1.25, 0.75, 0.75, 1.25, 1.25, -0.75, -0.75, -0.25]
|
||||
wp_y = [-1.5, -1.5, -0.5, -0.5, -1.5, -1.5, -1, -1, -0.5, -0.5, 0, 0, -1.5, -1.5]
|
||||
# Specify path resolution
|
||||
path_resolution = 0.05 # m / wp
|
||||
if path == 'Sim_Track':
|
||||
|
||||
# Smooth Path
|
||||
reference_path = ReferencePath(map, wp_x, wp_y, path_resolution,
|
||||
smoothing_distance=5)
|
||||
# Load map file
|
||||
map = Map(file_path='sim_map.png', origin=[-1, -2], resolution=0.005)
|
||||
|
||||
# Specify waypoints
|
||||
wp_x = [-0.75, -0.25, -0.25, 0.25, 0.25, 1.25, 1.25, 0.75, 0.75, 1.25,
|
||||
1.25, -0.75, -0.75, -0.25]
|
||||
wp_y = [-1.5, -1.5, -0.5, -0.5, -1.5, -1.5, -1, -1, -0.5, -0.5, 0, 0,
|
||||
-1.5, -1.5]
|
||||
|
||||
# Specify path resolution
|
||||
path_resolution = 0.05 # m / wp
|
||||
|
||||
# Create reference path
|
||||
reference_path = ReferencePath(map, wp_x, wp_y, path_resolution,
|
||||
smoothing_distance=5, max_width=0.15,
|
||||
circular=True)
|
||||
|
||||
# Add obstacles
|
||||
obs1 = Obstacle(cx=0.0, cy=0.0, radius=0.05)
|
||||
obs2 = Obstacle(cx=-0.8, cy=-0.5, radius=0.08)
|
||||
obs3 = Obstacle(cx=-0.7, cy=-1.5, radius=0.05)
|
||||
obs4 = Obstacle(cx=-0.3, cy=-1.0, radius=0.08)
|
||||
obs5 = Obstacle(cx=0.3, cy=-1.0, radius=0.05)
|
||||
obs6 = Obstacle(cx=0.75, cy=-1.5, radius=0.05)
|
||||
obs7 = Obstacle(cx=0.7, cy=-0.9, radius=0.07)
|
||||
obs8 = Obstacle(cx=1.2, cy=0.0, radius=0.08)
|
||||
reference_path.map.add_obstacles([obs1, obs2, obs3, obs4, obs5, obs6, obs7,
|
||||
obs8])
|
||||
|
||||
elif path == 'Real_Track':
|
||||
|
||||
# Load map file
|
||||
map = Map(file_path='real_map.png', origin=(-30.0, -24.0),
|
||||
resolution=0.06)
|
||||
|
||||
# Specify waypoints
|
||||
wp_x = [-1.62, -6.04, -6.6, -5.36, -2.0, 5.9,
|
||||
11.9, 7.3, 0.0, -1.62]
|
||||
wp_y = [3.24, -1.4, -3.0, -5.36, -6.65, 3.5,
|
||||
10.9, 14.5, 5.2, 3.24]
|
||||
|
||||
# Specify path resolution
|
||||
path_resolution = 0.2 # m / wp
|
||||
|
||||
# Create reference path
|
||||
reference_path = ReferencePath(map, wp_x, wp_y, path_resolution,
|
||||
smoothing_distance=5, max_width=2.0,
|
||||
circular=True)
|
||||
|
||||
# Add obstacles and bounds to map
|
||||
cone1 = Obstacle(-5.9, -2.9, 0.2)
|
||||
cone2 = Obstacle(-2.3, -5.9, 0.2)
|
||||
cone3 = Obstacle(10.9, 10.7, 0.2)
|
||||
cone4 = Obstacle(7.4, 13.5, 0.2)
|
||||
table1 = Obstacle(-0.30, -1.75, 0.2)
|
||||
table2 = Obstacle(1.55, 1.00, 0.2)
|
||||
table3 = Obstacle(4.30, 3.22, 0.2)
|
||||
obstacle_list = [cone1, cone2, cone3, cone4, table1, table2, table3]
|
||||
map.add_obstacles(obstacle_list)
|
||||
|
||||
bound1 = ((-0.02, -2.72), (1.5, 1.0))
|
||||
bound2 = ((4.43, 3.07), (1.5, 1.0))
|
||||
bound3 = ((4.43, 3.07), (7.5, 6.93))
|
||||
bound4 = ((7.28, 13.37), (-3.32, -0.12))
|
||||
boundary_list = [bound1, bound2, bound3, bound4]
|
||||
map.add_boundary(boundary_list)
|
||||
|
||||
else:
|
||||
reference_path = None
|
||||
print('Invalid path!')
|
||||
exit(1)
|
||||
|
||||
ub, lb, border_cells = reference_path.update_path_constraints(0,
|
||||
reference_path.n_waypoints, 0.1, 0.01)
|
||||
SpeedProfileConstraints = {'a_min': -0.1, 'a_max': 0.5,
|
||||
'v_min': 0, 'v_max': 1.0, 'ay_max': 4.0}
|
||||
reference_path.compute_speed_profile(SpeedProfileConstraints)
|
||||
# Get x and y locations of border cells for upper and lower bound
|
||||
for wp_id in range(reference_path.n_waypoints):
|
||||
reference_path.waypoints[wp_id].dynamic_border_cells = border_cells[wp_id]
|
||||
reference_path.show()
|
||||
plt.show()
|
||||
|
||||
|
|
205
simulation.py
205
simulation.py
|
@ -1,139 +1,162 @@
|
|||
from map import Map
|
||||
from map import Map, Obstacle
|
||||
import numpy as np
|
||||
from reference_path import ReferencePath
|
||||
from spatial_bicycle_models import SimpleBicycleModel, ExtendedBicycleModel
|
||||
from spatial_bicycle_models import BicycleModel
|
||||
import matplotlib.pyplot as plt
|
||||
from MPC import MPC
|
||||
from time import time
|
||||
from scipy import sparse
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# Select Simulation Mode | 'Race' or 'Q'
|
||||
sim_mode = 'Race'
|
||||
# Select Model Type | 'Simple' or 'Extended'
|
||||
model_type = 'Simple'
|
||||
# Select Simulation Mode | 'Sim_Track' or 'Real_Track'
|
||||
sim_mode = 'Sim_Track'
|
||||
|
||||
# Simulation Environment. Mini-Car on track specifically designed to show-
|
||||
# case time-optimal driving.
|
||||
if sim_mode == 'Sim_Track':
|
||||
|
||||
# Load map file
|
||||
map = Map(file_path='sim_map.png', origin=[-1, -2], resolution=0.005)
|
||||
|
||||
# Create Map
|
||||
if sim_mode == 'Race':
|
||||
map = Map(file_path='map_race.png', origin=[-1, -2], resolution=0.005)
|
||||
# Specify waypoints
|
||||
wp_x = [-0.75, -0.25, -0.25, 0.25, 0.25, 1.25, 1.25, 0.75, 0.75, 1.25,
|
||||
1.25, -0.75, -0.75, -0.25]
|
||||
wp_y = [-1.5, -1.5, -0.5, -0.5, -1.5, -1.5, -1, -1, -0.5, -0.5, 0, 0,
|
||||
-1.5, -1.5]
|
||||
|
||||
# Specify path resolution
|
||||
path_resolution = 0.05 # m / wp
|
||||
elif sim_mode == 'Q':
|
||||
map = Map(file_path='map_floor2.png')
|
||||
|
||||
# Create smoothed reference path
|
||||
reference_path = ReferencePath(map, wp_x, wp_y, path_resolution,
|
||||
smoothing_distance=5, max_width=0.23,
|
||||
circular=True)
|
||||
|
||||
# Add obstacles
|
||||
use_obstacles = False
|
||||
if use_obstacles:
|
||||
obs1 = Obstacle(cx=0.0, cy=0.0, radius=0.05)
|
||||
obs2 = Obstacle(cx=-0.8, cy=-0.5, radius=0.08)
|
||||
obs3 = Obstacle(cx=-0.7, cy=-1.5, radius=0.05)
|
||||
obs4 = Obstacle(cx=-0.3, cy=-1.0, radius=0.08)
|
||||
obs5 = Obstacle(cx=0.27, cy=-1.0, radius=0.05)
|
||||
obs6 = Obstacle(cx=0.78, cy=-1.47, radius=0.05)
|
||||
obs7 = Obstacle(cx=0.73, cy=-0.9, radius=0.07)
|
||||
obs8 = Obstacle(cx=1.2, cy=0.0, radius=0.08)
|
||||
obs9 = Obstacle(cx=0.67, cy=-0.05, radius=0.06)
|
||||
map.add_obstacles([obs1, obs2, obs3, obs4, obs5, obs6, obs7,
|
||||
obs8, obs9])
|
||||
|
||||
# Instantiate motion model
|
||||
car = BicycleModel(length=0.12, width=0.06,
|
||||
reference_path=reference_path, Ts=0.05)
|
||||
|
||||
# Real-World Environment. Track used for testing the algorithm on a 1:12
|
||||
# RC car.
|
||||
elif sim_mode == 'Real_Track':
|
||||
|
||||
# Load map file
|
||||
map = Map(file_path='real_map.png', origin=(-30.0, -24.0),
|
||||
resolution=0.06)
|
||||
|
||||
# Specify waypoints
|
||||
wp_x = [-9.169, 11.9, 7.3, -6.95]
|
||||
wp_y = [-15.678, 10.9, 14.5, -3.31]
|
||||
|
||||
# Specify path resolution
|
||||
path_resolution = 0.20 # m / wp
|
||||
|
||||
# Create smoothed reference path
|
||||
reference_path = ReferencePath(map, wp_x, wp_y, path_resolution,
|
||||
smoothing_distance=5, max_width=1.50,
|
||||
circular=False)
|
||||
|
||||
# Add obstacles
|
||||
add_obstacles = False
|
||||
if add_obstacles:
|
||||
obs1 = Obstacle(cx=-6.3, cy=-11.1, radius=0.20)
|
||||
obs2 = Obstacle(cx=-2.2, cy=-6.8, radius=0.25)
|
||||
obs4 = Obstacle(cx=2.0, cy=-0.2, radius=0.25)
|
||||
obs8 = Obstacle(cx=6.0, cy=5.0, radius=0.3)
|
||||
obs9 = Obstacle(cx=7.42, cy=4.97, radius=0.3)
|
||||
map.add_obstacles([obs1, obs2, obs4, obs8, obs9])
|
||||
|
||||
# Instantiate motion model
|
||||
car = BicycleModel(length=0.30, width=0.20,
|
||||
reference_path=reference_path, Ts=0.05)
|
||||
|
||||
else:
|
||||
print('Invalid Simulation Mode!')
|
||||
map, wp_x, wp_y, path_resolution = None, None, None, None
|
||||
exit(1)
|
||||
|
||||
# Create smoothed reference path
|
||||
reference_path = ReferencePath(map, wp_x, wp_y, path_resolution,
|
||||
smoothing_distance=5)
|
||||
|
||||
################
|
||||
# Motion Model #
|
||||
################
|
||||
|
||||
# Initial state
|
||||
e_y_0 = 0.0
|
||||
e_psi_0 = 0.0
|
||||
v_x_0 = 0.1
|
||||
v_y_0 = 0
|
||||
omega_0 = 0
|
||||
t_0 = 0
|
||||
|
||||
if model_type == 'Extended':
|
||||
car = ExtendedBicycleModel(reference_path=reference_path,
|
||||
e_y=e_y_0, e_psi=e_psi_0, v_x=v_x_0, v_y=v_y_0,
|
||||
omega=omega_0, t=t_0)
|
||||
elif model_type == 'Simple':
|
||||
car = SimpleBicycleModel(reference_path=reference_path,
|
||||
e_y=e_y_0, e_psi=e_psi_0, v=v_x_0)
|
||||
else:
|
||||
car = None
|
||||
print('Invalid Model Type!')
|
||||
map, wp_x, wp_y, path_resolution, reference_path, car \
|
||||
= None, None, None, None, None, None
|
||||
exit(1)
|
||||
|
||||
##############
|
||||
# Controller #
|
||||
##############
|
||||
|
||||
if model_type == 'Extended':
|
||||
Q = np.diag([1, 0, 0, 0, 0, 0])
|
||||
Qf = Q
|
||||
R = np.diag([0, 0])
|
||||
Reference = {'e_y': 0, 'e_psi': 0, 'v_x': 1.0, 'v_y': 0, 'omega': 0, 't':0}
|
||||
elif model_type == 'Simple':
|
||||
Reference = {'e_y': 0, 'e_psi': 0, 'v': 4.0}
|
||||
Q = np.diag([0.0005, 0.05, 0.5])
|
||||
Qf = Q
|
||||
R = np.diag([0, 0])
|
||||
else:
|
||||
Q, Qf, R, Reference = None, None, None, None
|
||||
print('Invalid Model Type!')
|
||||
exit(1)
|
||||
N = 30
|
||||
Q = sparse.diags([1.0, 0.0, 0.0])
|
||||
R = sparse.diags([0.5, 0.0])
|
||||
QN = sparse.diags([1.0, 0.0, 0.0])
|
||||
|
||||
T = 5
|
||||
StateConstraints = {'e_y': (-0.2, 0.2), 'v': (0, 4)}
|
||||
InputConstraints = {'D': (-1, 1), 'delta': (-0.44, 0.44)}
|
||||
mpc = MPC(car, T, Q, R, Qf, StateConstraints, InputConstraints, Reference)
|
||||
v_max = 1.0 # m/s
|
||||
delta_max = 0.66 # rad
|
||||
ay_max = 4.0 # m/s^2
|
||||
InputConstraints = {'umin': np.array([0.0, -np.tan(delta_max)/car.length]),
|
||||
'umax': np.array([v_max, np.tan(delta_max)/car.length])}
|
||||
StateConstraints = {'xmin': np.array([-np.inf, -np.inf, -np.inf]),
|
||||
'xmax': np.array([np.inf, np.inf, np.inf])}
|
||||
mpc = MPC(car, N, Q, R, QN, StateConstraints, InputConstraints, ay_max)
|
||||
|
||||
# Compute speed profile
|
||||
a_min = -0.1 # m/s^2
|
||||
a_max = 0.5 # m/s^2
|
||||
SpeedProfileConstraints = {'a_min': a_min, 'a_max': a_max,
|
||||
'v_min': 0.0, 'v_max': v_max, 'ay_max': ay_max}
|
||||
car.reference_path.compute_speed_profile(SpeedProfileConstraints)
|
||||
|
||||
##############
|
||||
# Simulation #
|
||||
##############
|
||||
|
||||
# logging containers
|
||||
# Set simulation time to zero
|
||||
t = 0.0
|
||||
|
||||
# Logging containers
|
||||
x_log = [car.temporal_state.x]
|
||||
y_log = [car.temporal_state.y]
|
||||
psi_log = [car.temporal_state.psi]
|
||||
v_log = [car.temporal_state.v_x]
|
||||
D_log = []
|
||||
delta_log = []
|
||||
v_log = [0.0]
|
||||
|
||||
# iterate over waypoints
|
||||
for wp_id in range(len(car.reference_path.waypoints)-T-1):
|
||||
# Until arrival at end of path
|
||||
while car.s < reference_path.length:
|
||||
|
||||
# get control signals
|
||||
D, delta = mpc.get_control()
|
||||
u = mpc.get_control()
|
||||
|
||||
# drive car
|
||||
car.drive(D, delta)
|
||||
car.drive(u)
|
||||
|
||||
# log current state
|
||||
# log
|
||||
x_log.append(car.temporal_state.x)
|
||||
y_log.append(car.temporal_state.y)
|
||||
v_log.append(car.temporal_state.v_x)
|
||||
D_log.append(D)
|
||||
delta_log.append(delta)
|
||||
v_log.append(u[0])
|
||||
|
||||
###################
|
||||
# Plot Simulation #
|
||||
###################
|
||||
# plot path
|
||||
car.reference_path.show()
|
||||
# Increase simulation time
|
||||
t += car.Ts
|
||||
|
||||
# plot car trajectory and velocity
|
||||
plt.scatter(x_log, y_log, c='g', s=15)
|
||||
# Plot path and drivable area
|
||||
reference_path.show()
|
||||
|
||||
# plot mpc prediction
|
||||
if mpc.current_prediction is not None:
|
||||
x_pred = mpc.current_prediction[0]
|
||||
y_pred = mpc.current_prediction[1]
|
||||
plt.scatter(x_pred, y_pred, c='b', s=10)
|
||||
# Plot car
|
||||
car.show()
|
||||
|
||||
plt.title('MPC Simulation: Position: {:.2f} m, {:.2f} m, Velocity: '
|
||||
'{:.2f} m/s'.format(car.temporal_state.x,
|
||||
car.temporal_state.y, car.temporal_state.v_x))
|
||||
plt.xticks([])
|
||||
plt.yticks([])
|
||||
plt.pause(0.0000001)
|
||||
# Plot MPC prediction
|
||||
mpc.show_prediction()
|
||||
|
||||
plt.close()
|
||||
# Set figure title
|
||||
plt.title('MPC Simulation: v(t): {:.2f}, delta(t): {:.2f}, Duration: '
|
||||
'{:.2f} s'.format(u[0], u[1], t))
|
||||
plt.axis('off')
|
||||
plt.pause(0.001)
|
||||
|
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue