Multi-Purpose-MPC/simulation.py

125 lines
3.6 KiB
Python
Raw Normal View History

2019-11-24 05:27:57 +08:00
from map import Map
import numpy as np
from reference_path import ReferencePath
from spatial_bicycle_models import SimpleBicycleModel, ExtendedBicycleModel
import matplotlib.pyplot as plt
from MPC import MPC
from time import time
if __name__ == '__main__':
# Create Map
map = Map(file_path='map_race.png', origin=[-1, -2], resolution=0.005)
#map = Map(file_path='map_floor2.png')
# Specify waypoints
wp_x = [-0.75, -0.25, -0.25, 0.25, 0.25, 1.25, 1.25, 0.75, 0.75, 1.25,
1.25, -0.75, -0.75, -0.25]
wp_y = [-1.5, -1.5, -0.5, -0.5, -1.5, -1.5, -1, -1, -0.5, -0.5, 0, 0, -1.5,
-1.5]
#wp_x = [-9.169, 11.9, 7.3, -6.95]
#wp_y = [-15.678, 10.9, 14.5, -3.31]
# Specify path resolution
path_resolution = 0.05 # m / wp
# Smooth Path
reference_path = ReferencePath(map, wp_x, wp_y, path_resolution,
smoothing_distance=5)
rx = [wp.x for wp in reference_path.waypoints]
ry = [wp.y for wp in reference_path.waypoints]
################
# Motion Model #
################
# initial state
e_y_0 = 0.0
e_psi_0 = 0.0
v_x_0 = 0.3
v_y_0 = 0
omega_0 = 0
t_0 = 0
# initialize car
car = SimpleBicycleModel(reference_path=reference_path,
e_y=e_y_0, e_psi=e_psi_0, v=v_x_0)
#car = ExtendedBicycleModel(reference_path=reference_path,
# e_y=e_y_0, e_psi=e_psi_0, v_x=v_x_0, v_y=v_y_0,
# omega=omega_0, t=t_0)
##############
# Controller #
##############
# path tracker
T = 10
Q = np.diag([0.1, 0.001, 0.1])
Qf = Q
#Q = np.diag([1, 0, 0, 0, 0, 0])
#Qf = Q
R = np.diag([0, 0])
StateConstraints = {'e_y': (-0.1, 0.1), 'v': (0, 4)}
InputConstraints = {'D': (-1, 1), 'delta': (-0.44, 0.44)}
Reference = {'e_y': 0, 'e_psi': 0, 'v': 4.0}
#Reference = {'e_y': 0, 'e_psi': 0, 'v_x': 1.0, 'v_y': 0, 'omega': 0, 't':0}
mpc = MPC(car, T, Q, R, Qf, StateConstraints, InputConstraints, Reference)
##############
# Simulation #
##############
# logging containers
x_log = [car.temporal_state.x]
y_log = [car.temporal_state.y]
psi_log = [car.temporal_state.psi]
v_log = [car.temporal_state.v_x]
D_log = []
delta_log = []
start_time = time()
# iterate over waypoints
for wp_id in range(len(car.reference_path.waypoints)-T-1):
print('V: {:.2f}'.format(car.temporal_state.v_x))
# get control signals
D, delta = mpc.get_control()
# drive car
car.drive(delta, D)
# log current state
x_log.append(car.temporal_state.x)
y_log.append(car.temporal_state.y)
v_log.append(car.temporal_state.v_x)
D_log.append(D)
delta_log.append(delta)
###################
# Plot Simulation #
###################
# plot path
car.reference_path.show()
# plot car trajectory and velocity
plt.scatter(x_log, y_log, c='g', s=15)
# plot mpc prediction
if mpc.current_prediction is not None:
x_pred = mpc.current_prediction[0]
y_pred = mpc.current_prediction[1]
plt.scatter(x_pred, y_pred, c='b', s=10)
plt.title('MPC Simulation: Position: {:.2f} m, {:.2f} m, Velocity: '
'{:.2f} m/s'.format(car.temporal_state.x,
car.temporal_state.y, car.temporal_state.v_x))
plt.xticks([])
plt.yticks([])
plt.pause(0.0000001)
end_time = time()
print('Time Elapsed: {:.2f} s'.format(end_time-start_time))
plt.close()